Exercise 12
Friday, July 13, 2018

Problem 1. (exponential congruences) Let \(x, y \in \mathbb{Z}, a \in \mathbb{Z}_n^* \setminus \{1\} \), and \(\text{ord}_n(a) = \min\{k \in \{1, \ldots, \varphi(n)\} \mid a^k \equiv 1 \mod n\} \). Show that
\[
 a^x \equiv a^y \mod n \iff x \equiv y \mod \text{ord}_n(a) .
\]

Problem 2. (How not to use the ElGamal cryptosystem) Alice and Bob are using the ElGamal cryptosystem. The public key of Alice is \((p, a, y) = (3571, 2, 2905)\). Bob encrypts the messages \(m_1 \) and \(m_2 \) as \(C_1 = (1537, 2192) \) and \(C_2 = (1537, 1393) \).

a) Show that the public key is valid.
b) What did Bob do wrong?
c) The first message is given as \(m_1 = 567 \). Determine the message \(m_2 \).

Problem 3. (properties of quadratic residues) Let \(p \) be prime, \(g \) a primitive element modulo \(p \) and \(a, b \in \mathbb{Z}_p^* \). Show the following:

a) \(a \) is a quadratic residue modulo \(p \) if and only if there exists an even \(i \in \mathbb{N}_0 \) with \(a \equiv g^i \mod p \).
b) If \(p \) is odd, then exactly one half of the elements \(x \in \mathbb{Z}_p^* \) are quadratic residues modulo \(p \).
c) The product \(a \cdot b \) is a quadratic residue modulo \(p \) if and only if \(a \) and \(b \) are both either quadratic residues or quadratic non-residues modulo \(p \).

Problem 4. (Euler’s criterion) Prove Euler’s criterion (Proposition 9.2): Let \(p > 2 \) be prime, then
\[
c \in \mathbb{Z}_p^* \text{ is a quadratic residue modulo } p \iff c^{\frac{p-1}{2}} \equiv 1 \mod p .
\]