Solution of Problem 1

\[
\begin{pmatrix}
 r_0 \\
 r_1 \\
 r_2 \\
 r_3
\end{pmatrix} = \begin{pmatrix}
 x & (x + 1) & 1 & 1 \\
 1 & x & (x + 1) & 1 \\
 1 & 1 & x & (x + 1) \\
 (x + 1) & 1 & 1 & x
\end{pmatrix} \cdot \begin{pmatrix}
 c_0 \\
 c_1 \\
 c_2 \\
 c_3
\end{pmatrix} \in \mathbb{F}_2^8
\] (1)

It is to show that:

\[
(c_3 u^3 + c_2 u^2 + c_1 u + c_0)((x + 1)u^3 + u^2 + u + x) \equiv \sum_{i=0}^3 r_i u^i \pmod{(u^4 + 1)}. \tag{2}
\]

We expand the multiplication on the left hand side of (2), reduce it modulo \(u^4 + 1 \in \mathbb{F}_2[u]\), and use the abbreviations \((r_0, r_1, r_2, r_3)\)' according to (1).

\[
\begin{align*}
(c_3 u^3 + c_2 u^2 + c_1 u + c_0)((x + 1)u^3 + u^2 + u + x) &= c_3(x + 1)u^6 + c_3 u^5 + c_3 u^4 + c_3 x u^3 + \\
& \quad c_2(x + 1)u^5 + c_2 u^4 + c_2 u^3 + c_2 x u^2 + \\
& \quad c_1(x + 1)u^4 + c_1 u^3 + c_1 u^2 + c_1 x u + \\
& \quad c_0(x + 1)u^3 + c_0 u^2 + c_0 u + c_0 x \\
& \equiv [c_3(x + 1)]u^6 + [c_3 + c_2(x + 1)]u^5 + [c_3 + c_2 + c_1(x + 1)]u^4 + \\
& \quad [c_3 x + c_2 + c_1 + c_0(x + 1)]u^3 + [c_2 x + c_1 + c_0]u^2 + [c_1 x + c_0]u + c_0 x.
\end{align*}
\]

Now, we apply the modulo operation and merge terms:

\[
\begin{align*}
\equiv [c_3 x + c_2 + c_1 + (x + 1)c_0]u^3 + [c_3(x + 1) + c_2 x + c_1 + c_0]u^2 + \\
& [c_3 + c_2(x + 1) + c_1 x + c_0]u + [c_3 + c_2 + c_1(x + 1) + c_0 x] \\
\equiv (1) r_3 u^3 + r_2 u^2 + r_1 u + r_0 \equiv \sum_{i=0}^3 r_i u^i \pmod{(u^4 + 1)}
\end{align*}
\]

Solution of Problem 2

Given: Alphabet \(\mathcal{A}\), blocklength \(n \in \mathbb{N}\) and \(\mathcal{M} = \mathcal{A}^n = \mathcal{C}\). \(\mathcal{A}^n\) describes all possible streams of \(n\) bits.

\(\text{a})\) An encryption is an injective function \(e_K : \mathcal{M} \to \mathcal{C}\), with \(K \in \mathcal{K}\).

Fix key \(K \in \mathcal{K}\). As \(e(\cdot, K)\) is injective, it holds:
\[
\{ e(M, K) \mid M \in \mathcal{M} \} \subseteq \mathcal{C}
\]
\[
\{ e(M, K) \mid M \in \mathcal{M} \} = \mathcal{M}
\]
\[
\text{Since } \mathcal{M} = \mathcal{C} \Rightarrow e(\mathcal{M}, K) = \mathcal{C} \text{ also surjective}
\]
\[
\Rightarrow e(\mathcal{M}, K) \text{ is a bijective function.}
\]

A permutation \(\pi \) is a bijective (one-to-one) function \(\pi : X \to X \).
\[
\forall K \Rightarrow e(\cdot, K) \text{ is a permutation with } X = A^n.
\]

b) With \(A = \{0, 1\} \Rightarrow |A| = |\{0, 1\}| = 2 \), and \(n = 6 \) there are \(N = 2^6 = 64 \) elements.
It follows that there are \(64! \approx 1.2689 \cdot 10^{89} \) different block ciphers.

Solution of Problem 3

Let \(\varphi : \mathbb{N} \to \mathbb{N} \) the Euler \(\varphi \)-function, i.e., \(\varphi(n) = |\mathbb{Z}_n^*| \) with \(\mathbb{Z}_n^* = \{ a \in \mathbb{Z}_n \mid \gcd(a, n) = 1 \} \).

a) Let \(n = p \) be prime. It follows for the multiplicative group that:
\[
\mathbb{Z}_p^* = \{ a \in \mathbb{Z}_p \mid \gcd(a, p) = 1 \} = \{ 1, 2, \ldots, p - 1 \} \Rightarrow \varphi(p) = p - 1.
\]

b) The power \(p^k \) has only one prime factor. So \(p^k \) has a common divisors that are not equal to one: These are only the multiples of \(p \). For \(1 \leq a \leq p^k \):
\[
1 \cdot p, \ 2 \cdot p, \ \ldots, \ p^{k-1} \cdot p = p^k.
\]
And it follows that
\[
\varphi(p^k) = p^k - p^{k-1} = p^{k-1}(p - 1).
\]

c) Let \(n = pq \) for two primes \(p \neq q \). It holds for \(1 \leq a < pq \)
\[
1) \ p \mid a \vee q \mid a \Rightarrow \gcd(a, p q) > 1, \text{ and}
\]
\[
2) \ p \nmid a \wedge q \nmid a \Rightarrow \gcd(a, p q) = 1.
\]
It follows \(\mathbb{Z}_{pq}^* = \{ 1 \leq a \leq pq - 1 \} \setminus \left(\{ 1 \leq a \leq p q - 1 \mid p \mid a \} \cup \{ 1 \leq a \leq p q - 1 \mid q \mid a \} \right) \).
Hence: \(\varphi(pq) = (pq - 1) - (q - 1) - (p - 1) = pq - p - q + 1 = (p - 1)(q - 1) = \varphi(p) \varphi(q). \)

d) Apply the Euler phi-function on \(n \) with the following steps:

1. Factorize all prime factors of the given \(n \)
2. Apply the rules in a) to c), correspondingly.
\[
\varphi(4913) = \varphi(17^3) = 17^2(17 - 1) = 4624, \text{ and}
\]
\[
\varphi(899) = \varphi(30^2 - 1^2) = \varphi((30 - 1)(30 + 1)) = \varphi(29 \cdot 31) = 28 \cdot 30 = 840.
\]