Solution of Problem 1

a) \(p = 13 \) is a prime number, \(a = 5 \) is a quadratic residue mod \(p \).

1) \(v = b^2 - 4a = b^2 - 4 \cdot 5 = b^2 - 20 \).

Choose: \(b = 5 \) \(\Rightarrow v = 25 - 20 = 5 \).

With Euler’s criterion, compute: \((\frac{5}{11}) = (\frac{5}{11})^{10} = 1 \).
\(\Rightarrow v = 5 \) is a quadratic residue mod 11. \(\checkmark \)

Choose: \(b = 6 \) \(\Rightarrow v = 36 - 20 = 16 \equiv 5 \mod 11 \).
\(\Rightarrow v = 5 \) is a quadratic residue mod 11. \(\checkmark \)

Choose: \(b = 7 \) \(\Rightarrow v = 49 - 20 = 29 \equiv 7 \mod 11 \).

With Euler’s criterion, compute:
\[(\frac{7}{11}) = 7^{\frac{11-1}{2}} \equiv 7^5 \equiv 7^5 \equiv 49 \cdot 49 \cdot 7 \equiv 5 \cdot 5 \cdot 7 \equiv -1 \mod 11. \]
\(\Rightarrow v \) is a quadratic non-residue modulo 11. \(\checkmark \)

2) Insert the values for \(a \) and \(b \) into the polynomial \(f(x) = x^2 - 7x + 5 \).

3) Compute \(r = x^{\frac{p+1}{2}} \mod f(x) \):

\[
\begin{align*}
x^6 : (x^2 - 7x + 5) &= x^4 + 7x^3 + 2x - 3 \\
n - (x^6 - 7x^5 + 5x^4) \\
+ 7x^3 - 5x^4 \\
- (7x^5 - 5x^4 + 2x^3) \\
- 2x^3 \\
- (-2x^3 + 3x^2 - 10x) \\
- 3x^2 + 10x \\
- (-3x^2 + 10x - 4) \\
4
\end{align*}
\]

Hence, \(r = 4 \). Furthermore, and \(-r = -4 \equiv 7 \mod 11 \) \(\Rightarrow (r, -r) = (4, 7) \).

// Validation \(r^2 = a \mod 11 \) is correct in both cases.

b) Both \(p, q \) satisfy the requirement for a Rabin cryptosystem: \(p, q \equiv 3 \mod 4 \).
For \(c \mod p \equiv 225 \mod 11 \equiv 5 \), we already know the square roots \(x_{p,1} = 4, x_{p,2} = 7 \).
For \(c \mod q \equiv 225 \mod 23 \equiv 18 \), compute the square roots \(x_{q,1}, x_{q,2} \) with the auxiliary parameter \(k_q = \frac{q+1}{4} = 6 \):

\[
x_{q,1} = c^{k_q} = 18^6 = 18^3 \cdot 18^3 \equiv 13 \cdot 13 \equiv 8 \mod 23,
\]
\[
x_{q,2} = -8 \equiv 15 \mod 23.
\]

Formulate \(tq + sp = 1 \):

\[
23 = 2 \cdot 11 + 1
\]
\[
\Rightarrow 1 = 23 - 2 \cdot 11
\]

We set \(a = tq = 23 \) and \(b = sp = -22 \). Compute all four possible solutions:

\[
m_{11} = ax_{p,1} + bx_{q,1} = 23 \cdot 4 - 22 \cdot 8 = -84 \equiv 169 \mod 253 \Rightarrow (\ldots1001)_2 \quad \checkmark
\]
\[
m_{12} = ax_{p,1} + bx_{q,2} = 23 \cdot 4 - 22 \cdot 15 = -238 \equiv 15 \mod 253 \Rightarrow (\ldots1111)_2 \quad \checkmark
\]
\[
m_{21} = ax_{p,2} + bx_{q,1} = 23 \cdot 7 - 22 \cdot 8 = -15 \equiv 238 \mod 253 \Rightarrow (\ldots1110)_2 \quad \checkmark
\]
\[
m_{22} = ax_{p,2} + bx_{q,2} = 23 \cdot 7 - 22 \cdot 15 = -169 \equiv 84 \mod 253 \Rightarrow (\ldots0100)_2 \quad \checkmark
\]

The solution is \(m = m_{21} = 84 \) since it ends on 0100 in the binary representation.

// Checking all solutions yields \(c = 225 \).

c) Since \(c = 225 \), one is enabled to compute two square roots in the reals, \(m = \pm 15 \). If naive Nelson chooses 1111, the result \(m = 15 \) is obvious, without knowing the factors in \(n = pq \).
Solution of Problem 2
Decipher \(m = \sqrt{c} \mod n \) with \(c = 1935 \).

- Check \(p, q \equiv 3 \mod 4 \)
- Compute the square roots of \(c \) modulo \(p \) and \(c \) modulo \(q \).

\[
\begin{align*}
 k_p &= \frac{p+1}{4} = 17, \quad k_q = \frac{q+1}{4} = 18, \\
 x_{p,1} &= c^{k_p} \equiv 1935^{17} \equiv 59^{17} \equiv 40 \mod 67, \\
 x_{p,2} &= -x_{p,1} \equiv 27 \mod 67, \\
 x_{q,1} &= c^{k_q} \equiv 1935^{18} \equiv 18^{18} \equiv 36 \mod 71, \\
 x_{q,2} &= -x_{q,1} \equiv 35 \mod 71.
\end{align*}
\]

- Compute the resulting square root modulo \(n \). \(m_{i,j} = ax_{p,i} + bx_{q,j} \) solves \(m_{i,j}^2 \equiv c \mod n \) for \(i,j \in \{1, 2\} \). We substitute \(a = tq \) and \(b = sp \). Then \(tq + sp = 1 \) yields \(1 = 17 \cdot 71 + (-18) \cdot 67 = tq + sp \) from the Extended Euclidean Algorithm.

\[
\Rightarrow a \equiv tq \equiv 17 \cdot 71 \equiv 1207 \mod n \\
\Rightarrow b \equiv -sp \equiv -18 \cdot 67 \equiv -1206 \mod n.
\]

The four possible solutions for the square root of ciphertext \(c \) modulo \(n \) are:

\[
\begin{align*}
 m_{1,1} &\equiv ax_{p,1} + bx_{q,1} \equiv 107 \mod n \Rightarrow 0000001101011, \\
 m_{1,2} &\equiv ax_{p,1} + bx_{q,2} \equiv 1313 \mod n \Rightarrow 0010100100001, \\
 m_{2,1} &\equiv ax_{p,2} + bx_{q,1} \equiv 3444 \mod n \Rightarrow 0110101110100, \\
 m_{2,2} &\equiv ax_{p,2} + bx_{q,2} \equiv 4650 \mod n \Rightarrow 1001000101010.
\end{align*}
\]

The correct solution is \(m_1 \), by the agreement given in the exercise.
Solution of Problem 3

a) Given $x \equiv -x \mod p$, prove that $x \equiv 0 \mod p$.

Proof. The inverse of 2 modulo p exists. Then,

$$-x \equiv x \mod p$$

$$\iff 0 \equiv 2x \mod p$$

$$\iff 0 \equiv x \mod p.$$

\[\square\]

b) Looking at the protocol, we can show that Bob always loses to Alice, if she chooses $p = q$.

i) Alice calculates \(n = p^2 \) and sends n to Bob.

ii) Bob calculates $c \equiv x^2 \mod n$ and sends c to Alice. With high probability $p \nmid x \iff x \not\equiv 0 \mod p$ (therefore, Bob almost always loses).

iii) The only two solutions $\pm x$ are calculated by Alice (see below) and sent to Bob. Bob cannot factor n, as

$$\gcd(x - (\pm x), n) = \begin{cases} \gcd(0, n) = n \\
\gcd(2x, n) = \gcd(2x, p^2) = 1 \end{cases}.$$

Alice always wins.

c) If Bob asks for the secret key as confirmation, the square is revealed and Alice will be accused of cheating. Bob can factor n by calculating $p = \sqrt{n}$ as a real number and win the game.

Note: The two solutions $\pm x$ to $x^2 \equiv c \mod p^2$ can be calculated as follows.

Let p be an odd prime and $x, y \not\equiv 0 \mod p$. If $x^2 \equiv y^2 \mod p^2$, then $x^2 \equiv y^2 \mod p$, so $x \equiv \pm y \mod p$.

Let $x \equiv y \mod p$. Then

$$x = y + \alpha p.$$

By squaring we get

$$x^2 = y^2 + 2\alpha py + (\alpha p)^2$$

$$\Rightarrow x^2 \equiv y^2 + 2\alpha py \mod p^2.$$

Since $x^2 \equiv y^2 \mod p^2$, we obtain

$$0 = 2\alpha py \mod p^2.$$

Divide by p to get

$$0 = 2\alpha y \mod p.$$

Since p is odd and $p \nmid y$, we must have $p \mid \alpha$. Therefore, $x = y + \alpha p \equiv y \mod p^2$. The case $x \equiv -y \mod p$ is similar.
In other words, if \(x^2 \equiv y^2 \mod p^2 \), not only \(x \equiv \pm y \mod p \), but also \(x \equiv \pm y \mod p^2 \). At this point, we have shown that only two solutions exist.

Now, we show how to find \(\pm x \), where \(x^2 \equiv c \mod p^2 \). As we can find square roots modulo a prime \(p \), we have \(x = b \) solves \(x^2 \equiv c \mod p \). We want \(x^2 \equiv c \mod p^2 \). Square \(x = b + ap \) to get

\[
\begin{align*}
 b^2 + 2bap + (ap)^2 &\equiv b^2 + 2bap \equiv c \mod p \\
 \Rightarrow b^2 &\equiv c \mod p.
\end{align*}
\]

Since \(b^2 \equiv c \mod p \) the number \(c - b^2 \) is a multiple of \(p \), so we can divide by \(p \) and get

\[
2ab \equiv \frac{c - b^2}{p} \mod p.
\]

Multiplying by the multiplicative inverse modulo \(p \) of \(2 \) and \(b \), we obtain:

\[
a \equiv \frac{c - b^2}{p} \cdot 2^{-1} \cdot b^{-1} \mod p.
\]

Therefore, we have \(x = b + ap \).

This procedure can be continued to get solutions modulo higher powers of \(p \). It is the numeric-theoretic version of Newton’s method for numerically solving equations, and is usually referred to as Hensel’s Lemma.

Example: \(p = 7 \), \(p^2 = 49 \), \(c = 37 \). Then

\[
\begin{align*}
 b &= c^{\frac{p+1}{4}} = 37^{\frac{7+1}{4}} = 37^2 \equiv 4 \mod p, \\
 b^{-1} &\equiv 2 \mod p, \quad 2^{-1} \equiv 4 \mod p, \\
 a &= \frac{c - b^2}{p} \cdot 2^{-1} \cdot b^{-1} = \frac{37 - 4^2}{7} \cdot 4 \cdot 2 \equiv 3 \mod p \\
 x &= b + ap = 4 + 3 \cdot 7 = 25
\end{align*}
\]

Check: \(x^2 = 25^2 \equiv 37 = c \mod p^2 \).