Solution of Problem 1

It holds \(a \mid b \Leftrightarrow \exists k \in \mathbb{Z} \) with \(ak = b \).

a) Show that from \(a \mid b \) and \(b \mid c \) it follows that \(a \mid c \).
\[
\begin{align*}
a \mid b & \Rightarrow \exists k_1 \in \mathbb{Z} : b = k_1 \cdot a \\
b \mid c & \Rightarrow \exists k_2 \in \mathbb{Z} : c = k_2 \cdot b \\
\Rightarrow & c = k_1 \cdot k_2 \cdot a \\
\Rightarrow & k = k_1 \cdot k_2 \\
\Rightarrow & \exists k \in \mathbb{Z} : c = k \cdot a \\
\Rightarrow & a \mid c
\end{align*}
\]

b) Show that from \(a \mid b \) and \(c \mid d \) it follows that \((ac) \mid (bd) \).
\[
\begin{align*}
a \mid b & \Rightarrow \exists k_1 \in \mathbb{Z} : b = k_1 \cdot a \\
c \mid d & \Rightarrow \exists k_2 \in \mathbb{Z} : d = k_2 \cdot c \\
\Rightarrow & b \cdot d = k_1 \cdot a \cdot k_2 \cdot c \\
\Rightarrow & k = k_1 \cdot k_2 \\
\Rightarrow & \exists k \in \mathbb{Z} : b \cdot d = k \cdot a \cdot c \\
\Rightarrow & (a \cdot c) \mid (b \cdot d)
\end{align*}
\]

c) Show that from \(a \mid b \) and \(a \mid c \) it follows that \(a \mid (xb + yc) \) \(\forall x, y \in \mathbb{Z} \).
\[
\begin{align*}
a \mid b & \Rightarrow \exists k_1 \in \mathbb{Z} : b = k_1 \cdot a \\
\Rightarrow & x \in \mathbb{Z}, x \cdot b = xk_1 \cdot a \\
a \mid c & \Rightarrow \exists k_2 \in \mathbb{Z} : c = k_2 \cdot a \\
\Rightarrow & y \in \mathbb{Z}, y \cdot c = yk_2 \cdot a \\
xb + yc & = xk_1 \cdot a + yk_2 \cdot a = (xk_1 + yk_2)a \\
\Rightarrow & k = xk_1 + yk_2 \\
\Rightarrow & \exists k \in \mathbb{Z} : (xb + yc) = k \cdot a \\
\Rightarrow & a \mid (xb + yc)
\end{align*}
\]

Solution of Problem 2

a) Let \(a, b, m \in \mathbb{Z} \). Show that if \(\gcd(a, b) = 1 \), then \(\gcd(ab, m) = \gcd(a, m) \gcd(b, m) \).

Solution:

Write \(a \) and \(b \) in terms of their prime factorizations, \(t_i, u_j \in \mathbb{N} \).
\[
a = \prod_{i=1}^{k_a} p_i^{t_i},
b = \prod_{j=1}^{k_b} p_j^{u_j}
\]
By assumption we have $\gcd(a, b) = 1$, which means that for all indices i, j it hold $p_i \neq q_j$.

Thus, those two products have no common divisor greater than 1.

Write m in terms of its prime factorization, though we add the prime factors of a, b. Hence, in this representation the exponents \hat{t}_i and \hat{u}_j might be zero, but $v_l \in \mathbb{N}$.

Moreover, the primes r_l shall be unequal to all the primes occurring in the prime factorization of a and b. Hence, the representation is unique.

The greatest common divisor of interest here yields:

$$
\gcd(ab, m) = \gcd\left(\prod_{i=1}^{l_a} p_i^{t_i}, \prod_{j=1}^{l_b} q_j^{u_j}, \prod_{i=1}^{l_a} p_i^{\hat{t}_i}, \prod_{j=1}^{l_b} q_j^{\hat{u}_j}, \prod_{l=1}^{l_m} r_l^{v_l}\right)
$$

where

$$
t'_i = \min\{t_i, \hat{t}_i\},
$$

$$
u'_j = \min\{u_j, \hat{u}_j\}.
$$

b) Let $a = b = 2$, $m = 4$, then

$$
\gcd(ab, m) = \gcd(4, 4) = \gcd(2, 4) \gcd(2, 4) = 4 = \gcd(a, m) \gcd(b, m),
$$

but obviously $\gcd(a, b) = 2$.

Solution of Problem 3

It is helpful to organize the plaintext $m = (m_1, m_2, m_3, ..., m_{kl})$ in a matrix with l rows and k columns as shown on the left hand side. The second matrix on the right hand side describes the mapping of the positions to the ciphertext.

$$
\begin{array}{cccccc}
 m_1 & m_{l+1} & \cdots & m_{(k-1)l+1} & 1 & 2 & \cdots & k \\
 m_2 & \cdots & \cdots & \vdots & k+1 & \cdots & \cdots & \vdots \\
 \vdots & \cdots & \cdots & \vdots & \vdots & \cdots & \cdots & \vdots \\
 m_l & \cdots & \cdots & m_{kl-1} & \vdots & \cdots & (l-1)k \\
\end{array}
\begin{array}{cccc}
 & & & \\
 & & & \\
 & & & \\
 m_1 & \cdots & m_{kl} & (l-1)k+1 & \cdots & \cdots & k1
\end{array}
$$

From this the encryption of the Scytale is described by a permutation π with:

$$
\pi = \begin{pmatrix}
 1 & 2 & \cdots & l & l+1 & \cdots & (k-1)l+1 & \cdots & kl-1 & kl \\
 1 & k+1 & \cdots & (l-1)k+1 & 2 & \cdots & k & \cdots & (l-1)k & kl
\end{pmatrix}
$$