Solution of Problem 1

a) \(\Rightarrow \) Let \(n \) with \(n > 1 \) be prime. Then, each factor \(m \) of \((n - 1)! \) is in the multiplicative group \(\mathbb{Z}_n^* \). Each factor \(m \) has a multiplicative inverse modulo \(n \). The factors 1 and \(n - 1 \) are obviously inverse to themselves. The factorial multiplies all these factors. The entire product must be 1 since all pairs of inverses yield 1.

\[
(n - 1)! \equiv \prod_{i=1}^{n-1} i \equiv (n - 1) (n - 2) \cdot \ldots \cdot 3 \cdot 2 \cdot 1 \equiv (n - 1) \equiv -1 \pmod{n}
\]

\(\Leftarrow \) Let \(n = ab \), and hence, composite with \(a, b \neq 1 \) prime. Thus, \(a \mid n \) and \(a \mid (n - 1)! \). From \((n - 1)! \equiv -1 \pmod{n} \) \(\Rightarrow \) \((n - 1)! + 1 \equiv 0 \pmod{n} \), we obtain \(a \mid ((n - 1)! + 1) \Rightarrow a \mid 1 \Rightarrow a = 1 \Rightarrow n \) must be prime.

b) Compute the factorial of 28:

\[
28! = \left(\frac{2}{1} \right) \left(\frac{12}{8} \right) \left(\frac{1}{16} \right) \left(\frac{27}{24} \right) \left(\frac{3}{28} \right) \left(\frac{16}{6} \right)
\]

\[
= \left(\frac{2}{1} \right) \left(\frac{12}{8} \right) \left(\frac{1}{16} \right) \left(\frac{27}{24} \right) \left(\frac{3}{28} \right) \left(\frac{16}{6} \right) \equiv -1 \pmod{29}
\]

Thus, 29 is prime as shown by Wilson’s primality criterion.

c) Using this criterion is computationally inefficient, since computing the factorial is very time-consuming.

Solution of Problem 2

a) Just calculate \(b_k = a^{b_k} \pmod{n} \), \(k = 1, 2, 3, \ldots \) until you find a non-trivial factor by calculating gcd\((b_k, n)\).

b) When \(n = 1403 \) and \(a = 2 \), the process of Pollard’s \(p - 1 \) algorithm is

<table>
<thead>
<tr>
<th>(b)</th>
<th>(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b_1 = a \mod 1403 = 2)</td>
<td>(d_1 = \gcd(1, 1403) = 1)</td>
</tr>
<tr>
<td>(b_2 = b_1^2 \mod 1403 = 4)</td>
<td>(d_2 = \gcd(3, 1403) = 1)</td>
</tr>
<tr>
<td>(b_3 = b_2^2 \mod 1403 = 64)</td>
<td>(d_3 = \gcd(63, 1403) = 1)</td>
</tr>
<tr>
<td>(b_4 = b_3^3 \mod 1403 = 142)</td>
<td>(d_4 = \gcd(141, 1403) = 1)</td>
</tr>
<tr>
<td>(b_5 = b_4^5 \mod 1403 = 794)</td>
<td>(d_5 = \gcd(793, 1403) = 61)</td>
</tr>
</tbody>
</table>
Therefore, 61 is a non-trivial factor of 1403 and 1403 = 23 · 61. B = 5 is sufficient as
\(p - 1 = 60 = 2^2 \cdot 3 \cdot 5 \).

c) When \(n = 25547 \) and \(a = 2 \), the process of Pollard’s \(p - 1 \) algorithm is

<table>
<thead>
<tr>
<th>(b)</th>
<th>(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b_1 = a \mod 25547 = 2)</td>
<td>(d_1 = \gcd(1, 25547) = 1)</td>
</tr>
<tr>
<td>(b_2 = b_1^2 \mod 25547 = 4)</td>
<td>(d_2 = \gcd(3, 25547) = 1)</td>
</tr>
<tr>
<td>(b_3 = b_2^2 \mod 25547 = 64)</td>
<td>(d_3 = \gcd(63, 25547) = 1)</td>
</tr>
<tr>
<td>(b_4 = b_3^4 \mod 25547 = 18384)</td>
<td>(d_4 = \gcd(18383, 25547) = 1)</td>
</tr>
<tr>
<td>(b_5 = b_4^2 \mod 25547 = 23616)</td>
<td>(d_5 = \gcd(23615, 25547) = 1)</td>
</tr>
<tr>
<td>(b_6 = b_5^2 \mod 25547 = 18620)</td>
<td>(d_6 = \gcd(18619, 25547) = 433)</td>
</tr>
</tbody>
</table>

Therefore, 433 is a non-trivial factor of 25547 and
\(25547 = 433 \cdot 59 \). B = 5 is sufficient as
\((p - 1) = 432 = 2^4 \cdot 3^3 \). These are factors within 6!, but not 5!. Note that
\(q - 1 = 58 = 2 \cdot 29 \) such that this factorization could only be found calculating
\(b_{29} \).

Solution of Problem 3

Chinese Remainder Theorem:

Let \(m_1, \ldots, m_r \) be pair-wise relatively prime, i.e., \(\gcd(m_i,m_j) = 1 \) for all \(i \neq j \in \{1, \ldots, r\} \), and furthermore let \(a_1, \ldots, a_r \in \mathbb{N} \). Then, the system of congruences

\[
x \equiv a_i \pmod{m_i}, \quad i = 1, \ldots, r;
\]

has a unique solution modulo \(M = \prod_{i=1}^{r} m_i \) given by

\[
x \equiv \sum_{i=1}^{r} a_i M_i y_i \pmod{M}, \quad (1)
\]

where \(M_i = \frac{M}{m_i} \), \(y_i = M_i^{-1} \pmod{m_i} \), for \(i = 1, \ldots, r \).

a) Show that \((1) \) is a valid solution for the system of congruences:

Let \(i \neq j \in \{1, \ldots, r\} \). Since \(m_j \mid M_i \) holds for all \(i \neq j \), it follows:

\[
M_i \equiv 0 \pmod{m_j}. \quad (2)
\]

Furthermore, we have \(y_j M_j \equiv 1 \pmod{m_j} \).

Note that from coprime factors of \(M \), we obtain:

\[
\gcd(M_j, m_j) = 1 \Rightarrow \exists y_j \equiv M_j^{-1} \pmod{m_j}, \quad (3)
\]

and the solution of \((1) \) modulo a corresponding \(m_j \) can be simplified to:

\[
x \equiv \sum_{i=1}^{r} a_i M_i y_i \equiv a_j M_j y_j \equiv a_j \pmod{m_j}. \quad (3)
\]

b) Show that the given solution is unique for the system of congruences:
Assume that two different solutions y, z exist:

$$y \equiv a_i \pmod{m_i} \land z \equiv a_i \pmod{m_i}, \ i = 1, \ldots, r,$$

$$\Rightarrow 0 \equiv (y - z) \pmod{m_i}$$

$$\Rightarrow m_i \mid (y - z)$$

$$\Rightarrow M \mid (y - z), \text{ as } m_1, \ldots, m_r \text{ are relatively prime for } i = 1, \ldots, r,$$

$$\Rightarrow y \equiv z \pmod{M}.$$

This is a contradiction, therefore the solution is unique.