Problem 1. *(ExamSS18P1)* In this problem, we consider encryption as addition modulo 26, the size of the Latin alphabet.

Consider the following ciphertext:

```
VASB EZNG VBAV FGUR ERFB YHGV BABS HAPR EGNV AGL
```

a) Calculate the index of coincidence I_C.

b) Decide whether the ciphertext was encrypted using a monoalphabetic or a polyalphabetic cipher. Substantiate your answer.

A new ciphertext, unrelated to the one above, and the first four plaintext letters are given as follows.

<table>
<thead>
<tr>
<th>Y</th>
<th>V</th>
<th>I</th>
<th>R</th>
<th>Y</th>
<th>B</th>
<th>A</th>
<th>T</th>
<th>N</th>
<th>A</th>
<th>Q</th>
<th>C</th>
<th>E</th>
<th>B</th>
<th>F</th>
<th>C</th>
<th>R</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>21</td>
<td>8</td>
<td>17</td>
<td>24</td>
<td>1</td>
<td>0</td>
<td>19</td>
<td>13</td>
<td>0</td>
<td>16</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>17</td>
<td>4</td>
</tr>
<tr>
<td>L</td>
<td>I</td>
<td>V</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>8</td>
<td>21</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

```
Y V I R Y B A T N A Q C E B F C R E
24 21 8 17 24 1 0 19 13 0 16 2 4 1 5 2 17 4
L I V E _ _ _ _ _ _ _ _ _ _ _ _ _ _
11 8 21 4 _ _ _ _ _ _ _ _ _ _ _ _ _ _
```

c) As shown, the first four letters of the plaintext message are known to be “LIVE”. Figure out which classical cipher was used for encryption and decrypt the ciphertext. *You may write your answer into the fields below the ciphertext.*

d) The method from the previous task is known as *known-plaintext attack*. Name two other types of attacks.

Let $m = \left(m_1 \ldots m_{N,k} \right)$ denote a message different from the one above. N denotes the number of blocks and k is the block length. The message m can then be written as $m = \left(m_1 \ldots m_n \ldots m_N \right)$, where $m_n = \left(m_{(n-1)k+1} \ldots m_{nk} \right)$ is a vector denoting one of the N blocks. For the *permutation cipher* with block length k, the encryption of the message block m_n can be written as a multiplication of a matrix P by the message block m_n.

\[c_n = e(m_n) = m_n P \]

e) Characterize the matrix P: What is its dimension? Name possible values of its elements. What is the sum of each row?

f) Modify the encryption function such that it uses cipher-block chaining.
Problem 2. (ExamSS18P2) Let \((\mathcal{M}, \mathcal{K}, \mathcal{C}, \epsilon, d)\) be a cryptosystem with message space \(\mathcal{M}\), key space \(\mathcal{K}\) and ciphertext space \(\mathcal{C}\) given as

\[
\mathcal{M} = \mathcal{K} = \mathcal{C} = \{1, 2, 3, 4\}.
\]

The message, the key and the ciphertext are random variables denoted as \(\hat{M}, \hat{K}\) and \(\hat{C}\), respectively. Assume that \(P(\hat{M} = M) > 0\) for all \(M \in \mathcal{M}\) and \(P(\hat{K} = K) > 0\) for all \(K \in \mathcal{K}\). The message and the ciphertext are related as follows for some \(\epsilon \in [0, 1]\):

\[
P(\hat{C} = j \mid \hat{M} = i) = \begin{cases}
1 - 3 & \text{if } i = j \\
\frac{\epsilon}{3} & \text{if } i \neq j.
\end{cases}
\]

a) Find \(H(\hat{C} \mid \hat{M})\) and \(P(\hat{C} = \hat{C})\) for an arbitrary distribution over the message space.

In what follows, assume that the messages are uniformly distributed over the message space.

b) Find \(H(\hat{C})\) and \(H(\hat{M} \mid \hat{C})\).

c) Show that

\[
H(\hat{M}) - H(\hat{M} \mid \hat{C}) = \log(4) - \epsilon \log(3) + (1 - \epsilon) \log(1 - \epsilon) + \epsilon \log(\epsilon).
\]

d) For which \(\epsilon\) is perfect secrecy achieved in this system?
Problem 3. \((ExamSS18P3) \) Alice and Bob perform a Diffie-Hellman key exchange protocol with prime \(p = 179 \) and primitive element \(a = 2 \).

Alice chooses the random secret \(x_A = 23 \) and Bob the random secret \(x_B = 31 \).

a) Show that \(a \) is a primitive element.

b) Calculate the values exchanged between Alice and Bob. Also, calculate the shared key.

c) Oscar is planning an Intruder-in-the-Middle Attack against this Diffie-Hellman system. He intercepts the messages \(u \) and \(v \) exchanged between Alice and Bob, respectively. He applies \(u^z \) and \(v^z \) before the messages are received by Alice and Bob. Which \(z \in \{2, \ldots, 178\} \) should he use so that the attack is effective? Determine the modified shared key.

d) How can Oscar’s attack be avoided?
Problem 4. (ExamSS18P4) Consider the RSA-Cryptosystem.

a) Bob chooses prime numbers $p = 11$, $q = 13$ and his public key as $e = 7$. Alice encrypts a message m and sends it to Bob. Bob receives the ciphertext $c = 31$. What is the message m?

b) How many RSA keys exist for two given primes p and q?

c) Some message $m \in \{1, \ldots, n - 1\}$ with $n = pq$ with two primes $p \neq q$ is encrypted using the RSA-Cryptosystem with public key (n, e). Show that it is possible to compute the secret key d if $p \mid m$ or $q \mid m$.

d) As a general result, show that -1 is a quadratic residue mod p if and only if $p = 4k + 1$ for some $k \in \mathbb{N}$.