Exercise 23. Within the step MixColumns of the AES algorithm a vector r is given by $r = Tc$ with $c = (c_0, c_1, c_2, c_3)'$, $c_i \in \F_{2^8}[x]$, and

$$T = \begin{pmatrix} x & (x + 1) & 1 & 1 \\ 1 & x & (x + 1) & 1 \\ 1 & 1 & x & (x + 1) \\ (x + 1) & 1 & 1 & x \end{pmatrix}.$$

Show $(c_3u^3 + c_2u^2 + c_1u + c_0)((x + 1)u^3 + u^2 + u + x) = r_3u^3 + r_2u^2 + r_1u + r_0 \mod u^4 + 1$.

Exercise 24. A sequence of message blocks is encrypted with AES in the modes ECB, CBC, OFB, CFB, and CTR.

(a) During transmission exactly one bit changes. How many bits are decrypted wrongly at maximum?

(b) What happens, if one bit of the ciphertext is lost or an additional one is inserted?

Exercise 25. Let $\varphi : \mathbb{N} \to \mathbb{N}$ be the Euler φ-function, i.e. $\varphi(n) = |\mathbb{Z}_n^*|$.

(a) Determine $\varphi(p)$ for a prime p.

(b) Determine $\varphi(p^k)$ for a prime p and a positive integer k.

(c) Determine $\varphi(pq)$ for two different primes $p \neq q$.

(d) Determine $\varphi(4913)$ and $\varphi(899)$.

Christmas Exercise.

TEDDCTYPKZ KUSLMNVAUD PWYCTULIWP