Exercise 19.
Johnny English wants to prove the British secret service that he knows the factorisation of a composite number n without revealing the factors. These factors are two distinct primes p and q fulfilling $p, q \equiv 3 \pmod{4}$. He suggests the following protocol:

(i) The secret service chooses an arbitrary quadratic residue y modulo n, sends y to Johnny.

(ii) Johnny computes the square root x of y, sends x to the secret service.

(iii) The secret service checks, whether $x^2 \equiv y \pmod{n}$.

These steps are repeated 20 times, if Johnny can compute the square roots modulo n in all 20 attempts, the secret service believes him. Show that the secret service can factor n with very high probability, hence that this protocol is a zero-knowledge protocol. Is a third party able to derive useful information about the factorisation of n by intercepting the communication between Johnny and the secret service?

Exercise 20.
Zero-knowledge-protocols can also be used to construct signature schemes. Construct a signature scheme from the Feige-Fiat-Shamir identification protocol by replacing the challenge (b_1, \ldots, b_k) with a hash value $h(m, x)$.

Specify the signing and the verification algorithm.

Exercise 21.
In the verification step of the DSA-Signature one first checks, whether $1 \leq r < q$. Show that an attacker can generate signatures for an arbitrary message m' by intercepting just one valid signature (r, s) for a message m, if this step is omitted.

Hint: Assume that $h(m)$ is invertible modulo $p - 1$ and modify r and s.