Exercise 20.
Consider the following hash-function:
\[h : \mathbb{N} \rightarrow \mathbb{N}_0, \ k \mapsto \lfloor 10000(k(1 + \sqrt{5})/2 - \lfloor k(1 + \sqrt{5})/2 \rfloor) \rfloor. \]
(a) Determine the upper and lower bounds of the codomain of \(h \).
(b) Find a collision for \(h \).

Exercise 21.
Both the CBC mode and the CFB mode can be used for the generation of a MAC.

- A plaintext is divided into \(n \) equally-sized blocks \(M_1, \ldots, M_n \).
- For the CFB-MAC, the ciphertexts are \(C_i = M_{i+1} \oplus E_K(C_{i-1}) \) for \(i = 1, \ldots, n-1 \) and \(\text{MAC}^{(n)}_K = E_K(C_{n-1}) \) with initial value \(C_0 = M_1 \).
- For the CBC-MAC, the ciphertexts are \(\hat{C}_i = E_K(\hat{C}_{i-1} \oplus M_i) \) for \(i = 1, \ldots, n-1 \) and \(\hat{\text{MAC}}^{(n)}_K = E_K(\hat{C}_{n-1} \oplus M_n) \) with initial value \(\hat{C}_0 = 0 \).

(a) Show that the equivalency \(\text{MAC}^{(n)}_K = \hat{\text{MAC}}^{(n)}_K \) holds.

Exercise 22.
Suppose Alice transmits the following cryptogram to Bob:
\[c = e(m \parallel h(k_2 \parallel m), k_1). \]
Assume that the message \(m \), the shared keys \(k_1, k_2 \), the hash values \(h(x) \) and the output of the encryption function have fixed lengths known to Alice and Bob.

(a) Derive the corresponding protocol for decryption and message validation used by Bob?
(b) Modify the given scheme to construct a similar protocol for a public-key cryptosystem. You may use two private-/public key-pairs \((K_1, L_1) \) and \((K_2, L_2) \) and a session key \(s \) used in the hash, which is securely transmitted to Bob within the cryptogram \(c \).