Exercise 23. The parameters for the cryptosystem used in an ElGamal signature scheme are

\[p = 4793, \; x = 9177, \; a = 4792, \; \text{and a random secret } k = 2811. \]

(a) Check if these parameters fulfill the requirements of the signature scheme. If the requirements are not fulfilled take the alternative values

\[x = 257 \text{ and } a = 1400. \]

(b) Sign the message \(m = 231 \) using the ElGamal signature scheme.

Exercise 24. The message \(m = 65 \) was signed using the ElGamal signature scheme with public parameters \(y = 399, \; p = 859, \) and \(a = 206. \)

(a) Verify the signature \(< r, s > = < 373, 15 >. \)

Exercise 25. An attacker has intercepted one valid signature \((r, s) \) of the ElGamal signature scheme and a hashed message \(h(m) \) which is invertible modulo \(p - 1. \)

(a) Show that the attacker can generate a signature \(< r', s' > \) for any hashed message \(h(m') \), if \(1 \leq r < p \) is not verified.