Problem 1.

(a) Describe Kerkhoff’s principle.

(b) We use the modified Roman alphabet \mathbb{Z}_{29} with the additional letters $\alpha = 26$, $\beta = 27$ and $\gamma = 28$. A Hill cipher was used to encrypt the following message m_1 into the ciphertext c_1:

$$m_1 = \text{CODE}, \quad c_1 = XN\beta A.$$

Determine the key matrix $U \in \mathbb{Z}_{29}^{2 \times 2}$ and compute its inverse $U^{-1} \in \mathbb{Z}_{29}^{2 \times 2}$.

(c) In the following, we use the common Roman alphabet \mathbb{Z}_{26}. The plaintext \hat{m}_2 is given in English. Each blank is substituted by a random uniformly distributed letter in \mathbb{Z}_{26}. The resulting plaintext is denoted by m_2. m_2 is encrypted by a Caesar cipher. Determine the key k_2, decrypt the following ciphertext c_2 and reveal \hat{m}_2. As side-information it is known that the word NOISE occurs in the plaintext.

\[
\begin{array}{cccccccccccccc}
C & Z & N & K & R & I & O & V & N & K & X & D & O & Y & V & N \\
O & J & J & K & T & F & O & T & M & T & U & O & Y & K & W \\
14 & 9 & 9 & 10 & 19 & 5 & 14 & 19 & 12 & 19 & 20 & 14 & 24 & 10 & 22
\end{array}
\]

Problem 2.

Consider the following cryptosystem with message space \mathcal{M} and cryptogram space \mathcal{C} with $\mathcal{M} = \mathcal{C} = \{0,1\}^4$. A message $m = (m_1, m_2, m_3, m_4) \in \mathcal{M}$ is encrypted to a cryptogram $c = (c_1, c_2, c_3, c_4)$ as follows.

$$
\begin{align*}
 c_1 &= (a m_1 + m_2) \mod 2 \\
 c_2 &= (b m_1 + c m_2) \mod 2 \\
 c_3 &= (d m_3 + e m_4) \mod 2 \\
 c_4 &= (m_3 + f m_4) \mod 2
\end{align*}
$$

The key is given as $k = (a, b, c, d, e, f) \in \{0,1\}^6$, i.e., it holds $c = e(m, k)$.

(a) Specify the maximal key space \mathcal{K} and its cardinality.

(b) Has the given system perfect secrecy, if the keys follow a uniform distribution over \mathcal{K}? State a reason for your answer.
Consider the above system with given key $k_0 = (0, 1, 1, 0, 1, 1)$.

(c) Specify the decryption rule $m = d(c, k_0)$ with that key k_0. Decrypt the cryptogram $c = (0, 0, 0, 1, 1, 0, 1, 1)$.

The above system may be used as block cipher on texts with arbitrary length.

(d) Decrypt the cryptogram $c = (0, 1, 0, 0, 0, 1, 1, 1)$ in the output feedback mode (OFB) with $C_0 = (0, 1, 1, 0)$.

(e) Encrypt the message $m = (1, 0, 0, 1, 0, 0, 1, 1)$ in the cipher feedback mode (CFB) using the same C_0.

Finally, answer the following general questions about block ciphers.

(f) Which other operation modes alongside OFB und CFB have been covered in the lecture?

(g) Name the steps which are executed in the rounds $1, \ldots, r - 1$ of the block cipher AES. What is the difference between those rounds and the last one?

Problem 3.

(a) Let $p \neq q$ prime and $x, y \in \mathbb{N}$. Prove that

$$x \equiv y \pmod{p} \quad \text{and} \quad x \equiv y \pmod{q} \iff x \equiv y \pmod{pq}$$

holds.

Consider the following primality test (a proof of validity is not needed):

Let $n > 1$ be an integer such that

(1) there exists a q prime with $q \mid (n - 1)$ and $q > \sqrt{n} - 1$,

(2) there exists an a such that $a^{n-1} \equiv 1 \pmod{n}$, and

(3) gcd($a^{(n-1)/q} - 1, n)$ = 1 holds

then n is prime.

(b) Show that 83 is prime by using the given primality test and choose $a = 11$.

(c) Name three further primality tests.

In the following, we consider an RSA-cryptosystem with public parameters $n = 9179$ and $e = 4321$. Furthermore, suppose you sneak into Bobs’ office and find a notice saying $\varphi(n^2) = 82390704$.

(d) Show1 for $a, b \in \mathbb{N}$ that $\varphi(ab) = \varphi(a)\varphi(b)$ holds if gcd($a, b) = 1$.

(e) Show without factoring n that $\varphi(n) = 8976$.

(f) Determine the private key d without factoring n.

(g) Factorize n using $\varphi(n)$.

1**Remark:** If gcd($a, b) = 1$, it holds that gcd($ab, m) = \text{gcd}(a, m)\text{gcd}(b, m)$.