Lehrstuhl für Theoretische Informationstechnik

Homework 14 in Optimization in Engineering Prof. Dr. Anke Schmeink, Michael Reyer, Alper Tokel 02.02.2015

Exercise 1. (Barrier method) Let

RNTHAACHE

 $\begin{array}{ll}\text{minimize} & f(x)\\ \text{subject to} & 2 \le x \le 4 \end{array}$

be an optimization problem with f(x) = x + 1, $x \in \mathbb{R}$. The feasible set is [2, 4] and the optimal solution $x^* = 2$. Formulate the logarithmic barrier function $\Phi(x)$ and calculate the optimal solution $x^*(t)$ of the problem

minimize $tf(x) + \Phi(x)$

with $x \in \mathbb{R}$ and constant t > 0. Illustrate the development of $x^*(t)$ and $f(x^*(t))$ for increasing t. What happens for $t \to \infty$?

- Please scroll -

Exercise 2. (General Barriers) The log barrier is based on the approximation of the indicator function $I_{-}(u)$ with the logarithmic function $-(1/t)\log(-u)$ (Section 7.2.1 in the lecture notes). We can also construct barriers from other approximations, which in turn yield generalizations of the central path and barrier method. Let $h : \mathbb{R} \longrightarrow \mathbb{R}$ be a twice differentiable, closed, increasing convex function with **dom** $h = \mathbb{R}_{<0}$. One such function is $h(u) = \log(-u)$; another example is h(u) = -1/u (for u < 0). Now consider the optimization problem (without equality constraints, for simplicity)

minimize
$$f_0(x)$$

subject to $f_i(x) < 0, \quad i = 1, \dots, s,$

where f_i are twice differentiable. We define the h-barrier for this problem as

$$\Phi_h(x) = \sum_{i=1}^s h(f_i(x)).$$

with domain $\{x \mid f_i(x) < 0, i = 1, ..., s\}$. When $h(u) = -\log(-u)$, this is the usual logarithmic barrier; when h(u) = -1/u, Φ_h is called the inverse barrier. We define the *h*-central path as

$$x^*(t) = \operatorname{argmin} tf_0(x) + \Phi_h(x),$$

where t > 0 is a parameter.

- (a) Explain why $tf_0(x) + \Phi_h(x)$ is convex in x, for each t > 0.
- (b) Show how to construct a dual feasible λ from $x^*(t)$. Find the associated duality gap.
- (c) For what functions h does the duality gap found in part (b) depend only on t and s?