Problem 1. (Optimality conditions) Consider the optimization problem

\[
\begin{align*}
 &\text{minimize } x_1^2 + x_2^2 \\
 &\text{subject to } (x_1 - 1)^2 + (x_2 - 1)^2 \leq 1, \\
 &\quad (x_1 - 1)^2 + (x_2 + 1)^2 \leq 1
\end{align*}
\]

with variable \(\mathbf{x} \in \mathbb{R}^2 \).

a) Sketch the feasible set and level sets of the objective. Find the optimal point \(\mathbf{x}^* \) and the optimal value \(p^* \).

b) Give the expression of the associated Lagrangian and state the KKT conditions. Do there exist Lagrange multipliers \(\lambda_1^* \) and \(\lambda_2^* \) that prove that \(\mathbf{x}^* \) is optimal?

c) Derive and solve the Lagrange dual problem. Does strong duality hold?