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Abstract

Many radio resource optimizations of practical interest share a common analytical core. A frame-

work focused on this core enables robust and tractable analysis, and provides clear answers that

apply to a wide variety of physical layer configurations. This framework has three key elements: (i)

a tractable abstraction of the human sensory system, (ii) a tractable abstraction of the physical layer

of a wireless communication link, and (iii) a fundamental technical result. In these 3 elements, a

function about whichall that is knownis that it is sigmoidal, that is, that its graph is an “S-curve”,

plays a central role. The fundamental result involves the maximization of the ratio f(x)/x.

Fractional programming is the study of the optimization of a ratio of two functions. Current

fractional programming literature involves ratios of concave and convex functions. But a sigmoidal

function is neither concave nor convex. This work characterizes the maximization of the ratio f(x)/x

for any function f having sigmoidal shape. Without imposing any particular algebraic functional

form (“equation”) on the considered function, this work shows that the maximizer always exists, is

unique, and can be graphically described and determined. Additionally, the ratio f(x)/x is shown

to be quasi-concave. The maximization of the ratio f(x)/g(x), with g a monotonic function, can

be approached by writing this ratio as h(t)/t with t=g(x). If h(t) retains the sigmoidal shape, the

preceding analysis can be applied.

This analytical framework is applied to various issues of current interest, involving resource

optimization in the context of wireless communications, with emphasis on third-generation cellular

systems. The applications include (i) decentralized power control (ii) power and data rate assign-

ment for maximal data throughput when data and media terminals share a CDMA cell, (iii) power

and coding rate optimization for the wireless transfer of image or video files, and (iv) choosing an

optimal level of media distortion when fidelity is expensive.
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Chapter 1

Introduction and Overview

Many radio resource optimizations of practical interest share a common analytical core. A frame-

work focused on this core enables robust and tractable analysis, and provides clear answers that

apply to a wide variety of physical layer configurations. This framework has three key elements: (i)

a tractable abstraction of the human sensory system, (ii) a tractable abstraction of the physical layer

of a wireless communication link, and (iii) a fundamental technical result. In these 3 elements, a

function about which all that is known is that it is a sigmoidal; i.e., that its graph is an "S-curve",

plays a central role. The fundamental result involves the maximization of the ratiof (x)/x with f

an S-curve. Examples of radio resource optimizations of practical interest to which this framework

can be applied include decentralized power control, power and data rate assignment for maximal

network throughput, power and coding rate selection for the transfer of media files which have been

scalably encoded, and choosing the “right amount” of tolerable media distortion when less distortion

means higher cost.

1.1 Overview

The three elements of this framework arise naturally in the context of one of the mentioned appli-

cations: power and coding rate selection for video streaming, which is the topic of chapter 6.

DECODER
VIDEO

SCALABLE
VIDEO
ENCODER y bits per

T secs of video

SCALABLE

LARGE
BUFFER

LARGE
BUFFER

(L/M)Rf(x)

Figure 1.1: Schematic diagram of a system for the streaming of scalably encoded video over a
wireless link

Figure 1.1 shows schematically the video streaming system of interest. An energy-limited termi-
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nal needs to transfer over a wireless link a “long” video sequence. Each T secs of video is encoded

as a fully embedded bit stream, as supported by MPEG standards. This stream is “scalable” in

the sense that it can be truncated at an arbitrary point,y, and decoded, leading to various levels

of reproduced media quality. The file corresponding to a given segment must be transferred in a

deadline of∆ seconds. Files will be split into small packets for transmission purposes and error-

control coding bits will be added. Packets received in error which cannot be corrected result in ideal

re-transmissions until correctly received and confirmed. Correctly received packets are placed in a

large buffer. Transferring each file complete will result in maximal quality per segment, but also

in a greater expenditure of energy per file, a hence a shorter battery life. Conversely, transferring

few bits per segment will lengthen the battery life, at the expense of possibly unacceptable segment

viewing quality. The terminal must jointly optimize both the truncation point of the embedded bit

stream (coding rate), and its transmission power.

Performing this joint optimization necessitates three crucial elements: (i) a functionU(y) giving

the end-user “perceptual quality” or “utility” of a decoded video segment when there arey bits in the

correspondingtruncatedfile (coding rate); (ii) a functionfs(x) giving the probability of successful

reception of a data packet when the signal-to-interference ratio (SIR) at the receiver isx; (iii) a

criterion leading to an index to be optimized as function of the quality of individual video segments,

and the energy spent per segment.

U
1
 

U
2
 

U
3
 

U
4
 

Figure 1.2: Representative S-curves.U1 is "mostly" concave.U4 is "mostly" convex.U2 approxi-
mates a "step" function.U3 includes a "ramp" that follows a straight line over a limited range.

The frame-success function (FSF), which gives the probability that a data packet is received

successfully as a function of the terminal’s signal-to-interference ratio (SIR) at the receiver, is de-

termined by physical attributes of the system, including the modulation technique, the forward error
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detection scheme, the nature of the channel, and properties of the receiver, including its demodu-

lator, decoder, and antenna diversity, if any. Obtaining an exact expression for this function for a

realistic model of a wireless communication setting may be prohibitively difficult or impossible.

And even when this function is available, it may be intractable or very inconvenient, and highly de-

pendent on the chosen physical layer configuration. However, one can safely assume that, whatever

this function is, its graph is S-shaped, as shown in fig. 1.2. Consequently, the analysis will apply to

many physical layer configurations of practical interest, as long as they give rise to an FSF that has

an S-shaped graph.

There are additional practical reasons why the S shape may be chosen for modeling a monotonic

function of interest. An arbitrary S-curve starts out convex and smoothly transitions to concave. But

the inflexion (transition) point is arbitrarily placed. Therefore, as fig. 1.2 shows, this family of curves

in fact contains as special cases curves that are “mostly” concave (inflexion point is “very close”

to the origin) and others that are “mostly” convex (inflexion point is “very far” from the origin).

Furthermore, the “ramp” of an S-curve may be nearly vertical, in which case the curve behaves

like a “step” (threshold) function. Or this “ramp” can approximate a straight line, in which case

the S-curve expresses a near linear relation over certain range. These shapes should accommodate

many situations of interest.

A quality-rate theory is not readily available, but can be arrived at through the concept of dis-

tortion. Distortion is typically defined as a relatively simple mean square measure of the difference

between a signal and its copy. The properties of any functionD(R) giving distortion as a function

of coding rate for a given information source are well known. It is generally accepted that theD(R)
function is decreasing and convex. Theperceptualquality of an “imperfect” copy of a signal is de-

termined by the human sensory system (visual, auditory, etc). Common distortion measures behave

poorly when distortion is large. However, within certain range it seems reasonable to assume that

the perceptual quality is somehow determined by distortion; i.e., that a functionQ(D) that translates

distortion into perceptual quality can be found. The quality-distortion function cannot be derived,

and should not be imposed. It should be obtained by psychophysical experimentation. However,

one can make some reasonable assumptions about the properties that any such function should pos-

sess. Figure 1.2 shows some plausible basic relations, which are explained in the corresponding

caption.

Further reflection indicates that it is reasonable to assume that the graph of theQ(D) function

is a “reversed” S-curve, as shown by fig. 1.4. This graph strictly generalizes the step function often

assumed in the literature. And, like the family of regular S-curves, this family also includes as

special cases curves that are “mostly” convex, others that are “mostly” concave, and some whose

“ramps” follow closely a straight line over a given interval. Thus, if the analyst assumes thatall

that is knownabout theQ(D) curve is that it is a reverse S-curve, and conducts the analysis on the

basis of properties derived from this shape, the solution procedure and conclusions will be valid for

a wide variety of plausibleQ(D) relations.

With Q(D) denoting the reversed S-curve givingperceptualquality as function of distortion, it
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Figure 1.3: Quality vs. distortion: Some plausible simple relations are: (i) fidelity equals quality
(red dashed line); (ii) hard threshold (step); (iii) ramp (blue broken line). The ramp includes as
special case the threshold (a = b = c ) and the linear relation (a = 0 , b = DMAX ). But as shown
by the next figure, the reverse S-curve includes all of these cases and more.
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Figure 1.4: Perceptual quality ("utility") as a function of distortion: The family of (reversed) S-
curves generalizes the step function often assumed in the literature, and includes many interesting
special cases.



6

is clear that the composite functionQ(D(R)) :=U(R) yields perceptual quality directly as a function

of the coding rate. It is then of interest to characterize the composite functionQ(D(R)) whenall that

is knownaboutD(R) is that it is decreasing and convex, andall that is knownaboutQ(D) is that it is

a "reversed" S-curve. The caption of fig. 1.5 contains an approximate analysis that suggests that the

graph ofU(R) = Q(D(R)) is a (non-reversed) S-curve, as displayed in fig. 1.2. Figure 1.6 confirms

this conjecture for specificQ(D) curves, and theD(R) function of the memoryless Gaussian source.
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Figure 1.5: The convex curve at the top corresponds toD(R) , which relates coding rate to distortion.
The S-curve at the bottom,Q(D), relates perceptual quality to distortion. The composite function
Q(D(R)) :=U(R) yields perceptual quality directly as a function of the coding rate. Some reflection
indicates that ifQ(D) is approximated by the broken red line at the bottom, the resultingU(R) is
the broken red line at the top. ForQ a reversed S-curve, we expectU(R) = Q(D(R)) to yield an
(increasing) S-curve.

At this point, of the three items identified previously as key to the analysis, two has been found:

both the FSF and the quality-rate function can be taken to be S-curves. The index to be optimized

needs to be defined. A reasonable objective is to maximize the total perceptual quality (utility) that

gets transferred by the time energy runs out; that is, to maximizen×u(y), wheren = E/c(y), with

E the available energy, andc(y) the energy cost of successfully transmitting ay-long file in ∆ secs.

This is equivalent to maximizingu(y)/c(y) (subject to an appropriate constraint), or perceptual

quality per Joule.
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Figure 1.6: The preceding analysis can be applied to the specific case of a memoryless Gaussian
source, whoseD(R) ∝ 2−2R (2nd subplot). At the top, there are two plausible quality-distortion
curves. At the bottom are the graphs of the composite functionsQ(D(R)) := U(R) corresponding
to theQ functions at the top, and the Gaussian rate-distortion curve. As the preceding analysis
suggests for the general case, in these examples the graphs ofQ(D(R)) are (increasing) S-curves.
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The detailed analysis of the maximization ofu(y)/c(y) is found in chapter 6; an outline is

presented now. First, it is easily established that, on the average,(L/M)R f(x)∆ information bits

are correctly received in∆ secs.L/M is the ratio of information bits to the packet length,R is the

raw data rate of the terminal, andf is a slight modification of the FSF. For giveny and∆, there

is a specific SIRx(y) that satisfies(L/M)R f(x)∆ = y, and there is a specific transmitted power,

P(y), that yieldsx(y). Thus, the total number of T-sec video segments of qualityu(y) that can be

transferred with an energy budget ofE is E/(P(y)∆). The total quality viewed is(E/∆)u(y)/P(y).
For fixedE and∆, it is sufficient to maximizeu(y)/P(y).

Thus, the terminal must solve:

max
x,y

u(y)
x

max
x

u(B f(x))
x

s.t. y = B f(x) OR s.t. 0≤ x≤ x̄

0≤ x≤ x̄

with B = (L/M)R∆ interpreted as the maximum amount of information bits (“best case scenario”)

that can be transferred in the deadline∆, andx the SIR.

u and f are both S-curves. The composite functionh(x) := u(B f(x)) is expected to retain the

S-shape. Hence, in order to solve this problem, the solution to maximizingh(x)/x whenall that is

knownabouth is that it is an S-curve needs to be found.

1.2 Content and Organization

The research reported herein has several “branches” that were pursued quasi-independently. Most

chapters started as self-contained papers. While an effort has been made to integrate the various

papers into a coherent report, the document still has the “flavor” of an edited collection of papers.

While redundancy and multiplication of information do exist, intentionally or otherwise, an advan-

tage of this fact is that chapters are largely self-contained. Pertinent literature is reviewed in each

chapter.

This work continues by investigating the maximization of the ratiof (x)/xwhenall that is known

about f is that its graph “starts out” convex at the origin, and “smoothly” transitions to concave as

it approaches a horizontal asymptote. Problems involving the optimization of ratios of functions

have been intensively studied in the last few decades, and are commonly called “fractional pro-

gramming”. These problems arise naturally in many contexts, including macroeconomics, finance,

inventory control, and numerical analysis, among others. Reference [5] is a very recent survey of

this literature. However, the most general formulations studied in this literature involve ratios of

concave and convex functions. In a few cases, the definitions of concavity and/or convexity are

relaxed to include a somewhat larger class of functions. But, the sigmoidal functions studied herein

are, by definition, neither concave nor convex (very loosely speaking they are “half and half”),
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and are, therefore, excluded from the current fractional programming literature. Without imposing

any particular algebraic functional form (“formula”) on the considered functions, chapter 2 shows

that the solution to this maximization problem always exists, is unique, and can be graphically de-

scribed and determined. A tangent line drawn from the origin to the graph off specifies the optimal

solution. Additionally, the ratiof (x)/x is shown to be quasi-concave.

The remainder of this work applies the basic analytical core afforded by sigmoidal fractional

programming to various issues of current interest, involving the optimization of power, data rate, and

coding rate in wireless communications, with emphasis on third-generation cellular communication

systems.

Decentralized power control in a multiple-transmission-rate scenario relevant to third-generation

wireless networks is studied first. Chapter 3 addresses the critical aspect of specifying a well-

behaved, sensible quality-of-service (QoS) index (“utility function”) for a data terminal to maxi-

mize. An index that exhibits solid technical behavior, is physically significant, intuitively appealing,

and applicable to a wide variety of physical layer configurations is proposed. Subsequently, in chap-

ter 4, decentralized power control is set up as a “game” in which each data transmitting terminal

maximizes its QoS. Closed-form Nash equilibrium conditions and power levels are derived “from

first principles”. It has been known for some time that Nash-equilibria are generally “inefficient”. In

fact, when each data-transmitting wireless terminal chooses a transmission power level to maximize

a sensible QoS index, they settle on equilibrium power levels that are “too high”. The challenge

is to induce the terminals to move toward a more efficient operating point in a decentralized fash-

ion. This chapter proposes a relatively simple mechanism, available in the economics literature, to

achieve an efficient decentralized allocation of power.

The next chapters focus on media transmission. Chapter 5 analyzes resource management in-

volving scalably encoded information. Scalable encoders, as that of the JPEG 2000 standard, pro-

duce files which can be truncated at an arbitrary point and decoded. An energy-efficient policy for

the transmission over a wireless network of scalably-encoded images is found. At the core of the

analysis is an “S-curve” yielding a measure of “quality” of the decoded information as a function

of the “truncation point” (coding rate). Transmission power, and the coding rate are jointly op-

timized. The single-user case is fully analyzed, and a closed-form solution given, which can be

clearly identified, graphically. The analysis leads to the maximization, over an appropriate region,

of the productk f(x)/x×u(y)/y, wherex is the received SIR,f is the frame success function,y is

the chosen number of decoded bits, andu is the “quality” function.k f(x)/x has the unit bits/Joule,

while quality/bit is the unit ofu(y)/y. Thus, the maximized product is an intuitively appealing index

in quality/Joule.

Chapter 6 extends the analysis of the preceding chapter to the more interesting case of scalable

video streaming (this is the sample application discussed in the present chapter). The analysis

leads to the maximization of the quality-to-power ratio, which is equivalent to maximizing quality

per Joule. Although the problem is set up as a joint optimization of power and coding rate, the

analysis indicates that any one of these two variables fully determines the other, when the underlying
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streaming application constrains the transmission time. Withu(y) the quality of a video segment

as a function of the coding rate,f the frame success function, andB certain constant, the terminal

should choose its transmission power so that the received SIRx maximizes the ratiog(x)/x, with g

a composite function of both S-curves,u(B f(x)).

The quality-distortion curve introduced in the present chapter can also be interpreted as a “utility

function” giving the “usefulness” to an observer of an “imperfect” signal. A key difference between

perceptual quality and “utility” is that utility is application-dependent. For instance, for a given

observer, a level of distortion deemed “unbearable” for a “serious” application, may be perfectly

acceptable (to the same observer) in a less “serious” situation. Chapter 7 takes the “utility” point of

view. A “utility function” on distortion, assumed to be a reversed S-curve, mathematically captures

the idea that media signals can be useful to humans at various degrees of noticeable distortion.

When less distortion means a higher cost, an end-user may prefer more distortion, in exchange for

energy, money or other savings. In chapter 7, two problems related to this issue are analyzed. First,

a consumer with a limited budget can acquire more media files, by accepting more distortion per

file. The amount of distortion that maximizesthe sumof the utility of each purchased file is found

and clearly identified in the graph of the utility function. Second, an energy-limited transmitter

with many media files to transfer can, statistically, reduce distortion per file, at the expense of fewer

transferred files. A solution that maximizes histotal expectedutility is given through the graph of the

expectedutility as a function of the received SIR. Because the proposed family of utility functions

contains as a special case the step function typically assumed by the literature, this formulation adds

to the literature, and takes nothing away.

All three analyses involving media files can be extended to consider multiple terminals, through

the application of game theory, as done in chapter 4. In fact, this is the reason why CDMA quantities

are used in defining the signal-to-interference ratio (SIR). For a more general analysis, one can

replace (in the single-terminal situation) the SIR with the familiar ratioEb/N0, with the numerator

denoting energy per bit, and the denominator denoting “noise energy”.

The situations discussed so far focus on the terminal/user. That is, the analysis seeks the best

allocation from the standpoint of the terminal, as opposed to the network’s administrator or owner.

By contrast, chapter 8 seeks centralized power and data rate allocations in order to maximize the

cell weightedthroughput. This setting is relevant to the uplink of a variable spreading gain (VSG)

CDMA cell, a technology capable of accommodating multi-rate traffic, which is supported by third-

generation standards. A weight is associated with the throughput of each terminal. The weights ad-

mits various practical interpretations, including per-bit utility, priority, or unit price paid to the net-

work by the user. The traffic is assumed delay tolerant, and the cell is assumed interference-limited

(out-of-cell interference and random noise are deemed negligible). First, a two-terminal-only sce-

nario is fully solved. This special case establishes the terminology and the solution procedure, and

provides a great deal of intuition. Subsequently, the analysis is extended to an arbitrary number

of terminals. A main conclusion of the analysis is that at least one terminal should operate at the

highest available data rate, and that terminalsnot operating at this rate should operate at the same
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signal-to-interference ratio (SIR), a value that maximizes the ratiof (x)/x, with f a slight modifica-

tion of the frame-success function. The development in this chapter describes a solution procedure

leading to the global optimizer, for the special case in which only two weights are considered.

Chapter 9 discusses how to extend the preceding model to consider three additional items:

(i) transmission power limits, (ii) non-negligible out-of-cell interference, and (iii) the presence of

media-transmitting terminals with fixed bit rates and inflexible SIR requirements. Power limita-

tions are important for obvious reasons. However, when out-of-cell interference is negligible, the

power allocation question reduces to finding a vector of carrier-to-interference ratios involving the

received powers of the terminals. The specific power levels are, in theory, arbitrary. However, when

the noise term includes strong out-of-cell interference, the values in absolute terms of the power

levels are important, and the power limitations of the terminals need to be taken explicitly into ac-

count. Additionally, there may be media-transmitting terminals operating at fixed bit rates and SIR.

These media terminals can be thought of as additional sources of “noise”, which decrease the total

throughput of the data terminals. Chapter 9 focuses on the interaction of a power-limited media

terminal, with two data terminals, one of which is more “important” than the other. The aim is to

show that much of the analysis of the preceding chapter can still be applied, with relatively minor

modifications, to the more complicated and realistic situation of this chapter.

Chapter 10 discusses some of the general limitations of this work, suggests extensions and

related topics for future research, and highlights some of the main contributions.

The appendices provide various technical results. Appendices C and D are of special note. In ap-

pendix C, the procedure used to find the equilibrium allocation of the game of chapter 4 is extended

to address a somewhat more general issue: power allocation when terminals SIR requirements are

“elastic”. That is, each terminal has a preferred or optimal SIR value, but is willing and able to op-

erate at lower values. The proposed procedure maximizes the number of terminals operating at their

preferred SIRs, subject to the constraint that no terminal be sacrificed to help another. Closed-form

analytical expressions are provided through the development.

Appendix D focuses on macro-diversity, a scheme in which the cellular structure of a CDMA

system is removed and each transmitter is jointly decoded by all “receivers”. This scheme has

been shown to increase the capacity of CDMA wireless networks. The available macrodiversity

capacity results rely on a “self-interference” approximation, which maynot be appropriate for 3rd

generation cellular systems. Explicitly considering power constraints, and without resorting to this

approximation, this appendix applies well established mathematical results to derive capacity results

that are less conservative than those previously available.
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Chapter 2

Sigmoidal Fractional Programming

2.1 Introduction

Sigmoidal functions are particularly useful, having played a fundamental role in the modeling of a

wide variety of interesting phenomena in the physical, biological and social sciences. One reason

for their ubiquity is that the graph of the solution to the differential equationx′(t) = rx(t)(1−x(t)/k)
has the sigmoidal shape (“logistic growth”). This equation, which arises naturally in many dynam-

ical systems, was introduced in [44], in the context of population growth. In this context,x(t)
denotes the size, at timet, of certain population, whose instantaneous growth rate is directly propor-

tional to both its current size, and the difference between this size and the environment’s “carrying

capacity” (maximal sustainable population size),k. Reference [28] introduces the generalization

x′(t) = rx(t)[1− (x(t)/k)β], and argues its usefulness; and [25] describes the statistical fitting of

the four-parameter family of curves introduced by [28]. A recent survey, [39], discusses other gen-

eralizations, and introduces its own. Reference [22] argues that sigmoidal functions may be even

more useful than traditionally thought, because in many interesting situations, a complex process

whose growth behavior may not seem sigmoidal, can be fruitfully modeled via the superposition of

various sigmoidal functions in a single model. This reference provides examples or suggests appli-

cations of this approach in many domains, including ecology, psychology, and socio-technological

inquiries. Likewise, in computing, sigmoidal functions have played the important role of “activation

functions” of processing elements in artificial neural networks.

In the previously mentioned studies, the sigmoidal curves are tied to specific algebraic func-

tional forms (“equations”) arising as a solution to certain differential equations. The analysis in this

chapter significantly differs from the literature in that the S-curves studied herein arenot described

in algebraic terms. The curves are described geometrically, and the analysis follows from properties

derived from their shape.

This chapter focuses on the maximization of the ratiof (x)/x, for any real-valued, univariate

function f having the specified sigmoidal shape. This ratio may admit different interpretations de-

pending on the context. For example, ifx(t) is associated with the “logistic growth” of certain

process, the ratio[x(t)− x(0)]/t, the average growth rate at timet, has the form of the ratio be-
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ing studied here. More concretely, many radio resource optimizations of practical interest depend

critically on the maximization of an expression of the formf (x)/x. The specific function and its

argument depend on the problem being analyzed; butf is, typically, monotonic, and can be as-

sumed to be a member of the family of “S-curves”, for reasons given in chapter 1. Some specific

applications are mentioned in chapter 1, and are discussed in detail in subsequent chapters.

It has also been mentioned in chapter 1 that problems involving the optimization of ratios of

functions arise naturally in many contexts, and have been intensively studied in the last few decades,

under the name “fractional programming”[5]. But, the sigmoidal functions studied here are ex-

cluded from the current fractional programming literature, because, by definition, they are neither

concave nor convex.

This chapter analyzes the “context-free” maximization of the ratiof (x)/x for any function f

having the specified sigmoidal shape, and characterizes the optimal solution strictly in terms of geo-

metrical properties derived from this shape. Specifically, without imposing any particular algebraic

functional form on the considered functions, this chapter shows that, under the assumptions herein,

the solution to this maximization problem exists, is unique, and can be graphically described and

determined. Additionally, the ratiof (x)/x is shown to be quasi-concave.

Below, the considered class of functions is formally characterized. Then, the solution to the

maximization problem of interest is derived. Subsequently, the quasi-concavity of the ratio is estab-

lished. Finally, some closing comments are given. Appendix A reproduces or fully develops certain

key technical results.

2.2 Formalization of the functions of interest

2.2.1 Basic Assumptions

Figure 2.1 provides a graphical illustration of a function representative of the class of functions to

be considered. Any such function,f , has the following characteristics:

1. Its domain is the non-negative part of the real line; that is, the interval[0,∞)

2. Its range is the interval[0,B) , where, for convenience, and without loss of generality, we take

B = 1.

3. It is increasing.

4. (“Initial convexity”) It is strictly convex over the interval[0,xf ], with xf a positive number.

5. (“Eventual concavity”) It is strictly concave over any interval of the form[xf ,L], where L is a

positive number greater thanxf

6. It has a continuous derivative.

Notice thatnoassumptions about the second derivative of the functionf are explicitly made.
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Figure 2.1: A representative function and some of its tangents

2.2.2 Immediately Implied Characteristics

1. Assumptions (1), (2) and (3) imply thatf (0) = 0.

2. Assumptions 4 (“initial convexity”) and 5 (“eventual concavity”) imply that the function is

continuous for anyx > 0. (See Theorem 1.3, Chapter III, in reference [2]). And this implica-

tion, together with the preceding one further imply thatf is continuous overall.

3. The “initial convexity” assumption 4 and the continuous derivative assumption 6 together

imply that f ′(0) < ∞ (See subsections A.2.1 and 2.3.2.1). This ensures that limx→0 f (x)/x is

finite, by L’Hopital rule

4. Assumption 6 also implies the continuity off .

2.3 Maximization

Below, the following optimization problem is solved:

Max: f (x)/x subject to 0≤ x≤M
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2.3.1 An interior solution

First, it is presumed that a “stationary” point exists within the allowable range ofx.

2.3.1.1 First-order conditions for a maximum

The first-order necessary conditions are:

f (x)−x f ′(x) = 0 (2.1)

It will prove useful to observe that the equation of a straight line tangent, at the point(x1, f (x1)), to

the curve described by the graph of the functionf can be written as

g1(x) = f (x1)+ f ′(x1)(x−x1) or g1(x) = b(x1)+ f ′(x1)x (2.2)

whereb(t) := f (t)− t f ′(t) represents the ordinate at the origin (y-intercept) of the straight line

tangent at the point(t, f (t)) to the curve described by the graph off (see fig. 2.1). Therefore,

equation (2.1) can be stated asb(x) = 0, which is discussed further in section 2.3.1.5.

2.3.1.2 Existence of a Solution

A solution to equation (2.1) always exists. This follows from these facts:

i) b(x) = f (x)−x f ′(x) is a continuous function.

ii) For sufficiently largexL, b(xL) > 0

iii) For anyxv in (0,xf ], b(xv) < 0 .

Statement (i) follows directly from the fact that bothf (x) and f ′(x) have been assumed to be

continuous.

Statement (ii) is a direct consequence of the fact that, by assumption, limx→∞ f (x) = 1. Hence,

in the limit, the tangent line to the graph off is the liney = 1. The y-intercept of this line is, of

course, 1. So, limx→∞ b(x) = 1, for whichb(x) is bound to take on positive values “sooner or later”.

Statement (iii) follows from the essential property of tangent lines of continuously differentiable

strictly convex functions (see section A.2.1). Over the interval[0,xf ], f is assumed to be strictly

convex. Takingx2 = 0 andx1 equal to an arbitrary number in(0,xf ], denoted asxv, inequality (A.3)

yields f (0) > f (xv)+ f ′(xv) · (0−xv) or, equivalently,b(xv) = f (xv)−xv f ′(xv) < 0.

Statements (i), (ii), and (iii) above have been shown to be valid. These three facts imply the

existence of anx∗satisfyingb(x∗) = 0, because a continuous function cannot go from a negative to

a positive value without taking on the value zero.

Furthermore, notice that the validity of statement (iii) immediately implies that any suchx∗must

be greater thanxf (that is, any suchx∗must be in the interval over whichf is concave), since,

x < xf → b(x) < 0.
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2.3.1.3 Uniqueness of the solution

In subsection 2.3.1.2 it was established that any solution tob(x) = f (x)−x f ′(x) = 0 must must lie

inside the interval wheref is strictly concave. The uniqueness of this solution follows directly from

the “monotone intercepts” corollary, presented in subsection A.2.2. This results indicates that ifx1

andx2 are points in an interval of the real line over which the functionf is strictly concave, then

x2 > x1implies thatb(x2) > b(x1). Hence, ifx∗is such thatb(x∗) = 0, anyx 6= x∗must be such that

b(x) 6= 0

2.3.1.4 Optimality of the solution

The derivative of the ratiof (x)/x can be expressed as

x f ′(x)− f (x)
x2 =−b(x)

x2 (2.3)

with b(x) as previously defined. The derivative is well-defined with the possible exception of the

boundary valuex = 0. The casex = 0 is discussed in the subsection 2.3.2. For the purposes of this

section,x is assumed to be positive.

The monotone intercepts corollary of subsection A.2.2 specifies that for anyx > x∗, b(x) >

b(x∗) = 0. Therefore, the ratiof (x)/x is strictly decreasingfor anyx > x∗.

The same argument leads to the conclusion that the ratiof (x)/x is strictly increasingfor any

xf < x < x∗.

In subsection 2.3.1.2 it was established thatb(x) < 0 for anyx in (0,xf ]. Therefore, the derivative

of the ratio f (x)/x is positive for any suchx, (see equation 2.3 above), which means this ratio is

increasing over(0,xf ].

In conclusion, the ratiof (x)/x is less thanf (x∗)/x∗ for any positivex 6= x∗.

2.3.1.5 Description of the solution: The characteristic tangent

The solution to the first-order necessary optimizing conditions given by equation (2.1) can be di-

rectly identified in the graph of the functionf . Only one positive value,x∗, satisfies equation (2.1).

(x∗, f (x∗)) is the only point at which a line tangent to the curve describing the function passes

through the origin. Thus, the equation of any such tangent line isg∗(x) = f ′(x∗)x . (See the tangent

line drawn atx∗ in fig. 2.1). This tangent line is termed “thecharacteristic tangent”of a given

sigmoidal function. Of course, different sigmoids may have the same characteristic tangent.

The value of the objective function at the solution,x∗, can be obtained graphically as the slope

of the characteristic tangent, which isf (x∗)/x∗. This observation can be useful for conceptual

“sensitivity analyses”. The effect on the optimal solution of changing one sigmoid for another (for

example via a change in certain parameter) immediately manifests itself, visually, through the new

characteristic tangent, and its slope.
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2.3.2 “Boundary” solution

The development so far has ignored the constraint thatx≤ M for someM. Below, this issue is

addressed. Before that, the possibility that the optimal value be zero is formally discarded.

2.3.2.1 The non-optimality of x=0

By construction, and the application of L’Hopital rule, limx→0 f (x)/x = f ′(0) < ∞ . In sub-sections

2.3.1.2 and 2.3.1.4 it was discussed why the ratiof (x)/x is increasing over the interval(0,xf ].
Hence,x = 0 isnot the maximizer.

2.3.2.2 The global optimality of the smallest ofM and x∗

Given the discussion in subsections 2.3.1.4 and 2.3.2.1, it is clear that the ratiof (x)/x is increasing

over the interval[0,x∗], wherex∗ is the only value ofx satisfying the first-order necessary optimizing

conditions given by equation (2.1). Hence, if the maximum allowable value forx, denoted asM,

is less thanx∗, f (M)/M is the highest achievable value for the ratiof (x)/x. But if x∗ is less than

M, x = x∗ is clearly the optimizing choice. Therefore, the smallest of the numbersM andx∗ is the

global maximizer.

2.4 The Quasi-concavity off (x)/x

In the preceding development, it has been determined that, for the class of functions under con-

sideration, the ratiof (x)/x is “single-peaked”; that is, there is a numberx∗ such that this ratio is

strictly increasing for allx∈ [0,x∗) and strictly decreasing for allx∈ (x∗,∞). This implies the quasi-

concavity of this ratio. For a general discussion about quasi-concavity and various related concepts

and results, see [27].

Below, the definition of quasi-concavity is given, and the compliance off (x)/x with this defini-

tion is formally established.

2.4.1 Definition of Quasi-concavity

Definition: The functionh : I → R , defined on an intervalI ⊂ℜ , is said to be quasi-concave if its

upper contour sets, {x∈ I : h(x)≥ t}, are convex sets; that is, for anyt ∈ℜ, anyα ∈ [0,1], and any

x1,x2 ∈ I , h(x1)≥ t andh(x2)≥ t imply that

h(αx1 +(1−α)x2)≥ t (2.4)

The functionh is said to bestrictly quasi-concave if the implied inequality in (2.4) holds strictly

wheneverx1 6= x2 andα ∈ (0,1).
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2.4.2 Verification of Quasi-concavity

The functionf (x)/x is strictly quasi-concave.

Proof:

For notational convenience, leth(x) .= f (x)/x and leth(x∗) .= P∗.

Let t ∈ (0,P∗). Notice that verifying (2.4) is trivial fort outside this interval.

Suppose 0≤ x1 < x2 , h(x1)≥ t andh(x2)≥ t

Becauseh(x) is continuous and strictlyincreasingin the interval[0,x∗), there is anx′t such that

h(x)≥ t for all x betweenx′t andx∗, andh(x) < t for x < x′t . Likewise, sinceh(x) is continuous and

strictly decreasingin the interval(x∗,∞), there is anx′′t such thath(x) ≥ t for all x betweenx∗and

x′′t , andh(x) < t for x > x′′t .

Then, clearly, anyx for which h(x)≥ t must be betweenx′t andx′′t , and anyx betweenx′t andx′′t
is such thath(x)≥ t . That is,x′t ≤ x≤ x′′t ⇔ h(x)≥ t.

Therefore,h(x1)≥ t andh(x2)≥ t impliesx′t ≤ x1 < x2 ≤ x′′t
And for α ∈ (0,1), x1 < αx1 +(1−α)x2 < x2. This impliesx′t < αx1 +(1−α)x2 < x′′t , which

further impliesh(αx1 +(1−α)x2)≥ t

Q.E.D.

2.5 Discussion

The maximization of the ratiof (x)/x for any function f having a “sigmoidal” shape has been

studied, and its optimal solution been characterized without imposing any particular algebraic func-

tional form (“equation”) on the considered functions. “Sigmoidness” has been captured in a strictly

geometric manner, by assuming that the considered functions “start out” convex at the origin, and

“smoothly” transition to concave as they approach a horizontal asymptote. Thisgeometricconstruc-

tion had not been found in the scientific literature, although sigmoidal functions have been studied

in numerous contexts, including in technological, biological and socio-economic environments. On

the basis of geometrical properties derived from this shape, this note shows that the solution to the

maximization problem of interest always exists, is unique, and can be graphically described and

determined.

The graphical identification of the solution could be valuable as a conceptual tool to understand

the meaning of the solution, as well as a “sensitivity analysis" tool, to visualize how a change in the

considered function can impact the optimal solution.

Central to the development and fully developed herein, the observation that the “y-intercepts”

of concave and convex functions are monotonic may be useful beyond the particular aims of this

work.

Along the way, the ratiof (x)/x has been shown to be quasi-concave, which is by no means

obvious given the arbitrary sigmoidal shape of the function in the numerator. This fact can be

beneficial in situations in which this maximization is embedded into a larger problem, as in the
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“game” discussed in chapter 3 and in references [6, 20, 33], where certain important results ( such

as Debreu’s “general equilibrium” theorem) can be invoked because of the quasi-concavity of this

ratio.

Through the remainder of this work it will be made clear that the maximization of a ratio of the

form f (x)/x, with f some “S-curve”, is particularly relevant to several important problems involving

resource management for data communication over a wireless medium. This includes decentralized

power control, power and data rate assignment for maximal network throughput in a 3G-CDMA

context, and resource management for scalably-encoded visual information, as with the JPEG-2000

and MPEG-4 standards.
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Chapter 3

Robust Modeling for Wireless Data

3.1 Introduction

Several recent scholarly publications, following an approach suggested by Ji, [12], recognize that

algorithms useful for engineering applications can be obtained via the formulation of radio resource

management issues, in particular power control in wireless data applications, on the foundations of

microeconomic theory (References [6] and [20] are recent surveys of this literature). This approach

is centered around the notion of a quality-of-service (QoS) index, often referred to, by analogy with

economics literature, as a “utility function”, defined as a real-valued function of certain physically-

significant quantities. Algorithms are designed seeking the maximization, under appropriate rules

and constraints, of the utility of each transmitter.

Utility maximization in a practical setting neednot involve a human user instantaneously choos-

ing utility-maximizing levels of resources during transmission. Rather, it may be implemented by

software inside transmitting terminals. Depending upon the service agreement, a human “customer”

may or may not have control of the embedded program. This observation is important because an

inappropriate QoS index may lead the terminal to behave in a manner inconsistent with human

intelligence.

Utility maximization, like other radio resource optimizations of practical interest, depends crit-

ically on a function giving the probability of the correct reception of a data packet in terms of the

signal-to-interference ratio (SIR) at the receiver. This “frame-success” function (FSF) is determined

by physical attributes of the system, including the modulation technique, the forward error detection

scheme, the nature of the channel, and properties of the receiver, including its demodulator, decoder,

and antenna diversity, if any. It may be prohibitively difficult or impractical to obtain and/or work

with an exact expression of this function. Therefore, functions corresponding to highly simplified

situations are often utilized in analytical studies. Regrettably, the obtained results may only be valid

for the rare situations for which the assumed functional form is appropriate.

In view of the above, it is highly desirable that analytical studies be based on generalized frame-

success/utility functions, whose assumed characteristics match most realistic situations. Results

obtained on the basis of such “generic” functions would then be robust, in the sense that they would
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apply to a wide variety of physical layer configurations and practical situations.

Perhaps the only non-trivial feature which can be assumed to match most, if not all, frame-

success functions of practical interest is “sigmoidness”; that is, the graph of any such function is

S-shaped. Below it is assumed that the frame-success functionfs of interests obeys the technical

properties of the generalized S-curve discussed in greater detail in chapter 2.

Another critical issue is specifying an appropriate utility function, which is the QoS index whose

maximization is assumed to be sought by each user. Below, after discussing other such indices

available in the literature, theearned-throughput-to-power ratio (ETPR) is discussed. As a QoS

index, the ETPR is shown to exhibit good mathematical behavior, be physically significant, attain

or surpass the intuitive appeal of related measures already accepted by the scientific literature, and,

perhaps more significantly, be defined for arbitrary frame-success functions of practical interest. In

chapter 4, a game in which terminals with dissimilar data rates choose transmission power seeking

to independently maximize their respective ETPR is analyzed.

3.2 A Generalized “frame-success” function (FSF)

It is assumed that the functionfs, which gives the probability of the successful reception of a trans-

mitted data packet in terms of the signal-to-interference ratio (SIR) at the base station, is such that

the related functionf defined byf (x) = fs(x)− fs(0) obeys the general properties of the generalized

sigmoidal function discussed in 2.2. It is further assumed thatfs (and hencef ) has a continuous

second derivative.
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Figure 3.1: A typical “corrected” frame-success function and its “critical tangent”
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3.3 Early QoS indices for wireless data

3.3.1 The Intuitive Index and Its Problem.

The ratio of a terminal’s throughput to the power employed by it was introduced in [48] in an

analysis of re-transmission schemes of data packets. Specifically, letfs(γ) denote the frame success

function, andγ the received SIR. The TPR is proportional to the quantityR fs(γ)/P, whereP is

the transmission power of the concerned transmitter, andR its transmission rate. This yields a

physically significant measure in bits per Joule of considerable appeal as a user’s quality-of-service

index. Below, a development leading to this measure “from first principles” is given. But, generally,

fs(0) > 0, which implies that the TPR grows without bound as the transmission power approaches

zero.

The zero-power issue can become a practical problem. The implementation of utility maximiza-

tion in a practical setting may take the form of an algorithm, not necessarily controllable by a human

operator, possibly embedded into a transmitting terminal. Thus, the misbehavior of the TPR near

zero could drive the algorithm toward arbitrarily small transmission power levels, or no transmis-

sion at all, in situations where such behavior would be inappropriate. To counter this, the algorithm

would need to be endowed with additional “intelligence”, which would increase its computational

complexity.

3.3.2 The Efficiency Function remedy and its problems.

Reference [35] and the literature that followed it replaced the frame success function in the numer-

ator of the TPR with an “efficiency function”,fe(γ), which gives (as a function of the SIR in the

received signal) a “measure of the efficiency of the transmission protocol” [35]. Then, they defined

the utility function as proportional to the ratioR fe(γi)/Pi .

But fe was only specified, as(1−2BER(γi))
M, for frame-success functions of the simple form

(1−BER(γi))
M (BER denotes the bit error rate). Moreover, there is no clear physical or probability

interpretation for this function, nor for the utility function obtained from it. Furthermore, power

control algorithms designed with this efficiency function can be highly suboptimal (of the order of

18 to 1 in a specific example) [31].

3.4 The ETPR: An Improved QoS Index

3.4.1 A QoS Metric from First Principles

The development of a QoS index from first principles may provide some additional valuable insights

into this issue, and is done below.
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3.4.1.1 Decision Scenario

It is assumed that the underlying communication technology is CDMA, although the general ap-

proach could be extended to other technologies (one can set up the analysis in terms of the familiar

ratioEb/N0; that is, energy-per-bit over “noise”). Specifically:

Given:

• A certain amount of energy,Ei , available for transmission

• A fixed transmission rate ofRi bits per second

• A long sequence of blocks of bits (“frames”) of lengthMi containingLi < Mi data bits (plus

“overhead”).

• A certain fixed level of interference (noise),Ii

• A frame-success functionfs as described in section 3.2.

the transmitter wants to choose its transmission power in order to satisfy a reasonable optimality

criterion. The transmission power will be set at the start of the transmission, and held constant until

energy runs out.

3.4.1.2 Performance for a Fixed Power Level

Since only one terminal is being considered in this development, the subscripti is dropped. Let

Q= P·h be the power at the receiver when a certain data packet is transmitted with powerP; and let

I be the interference (noise) power. Then,fs(GQ/I) is the probability that said packet is correctly

received.G is the spreading (processing) gain, defined as the ratio of the channel’s “chip rate”,Rc,

to the transmission bit rate,R.

Assuming that, once a packet is received in error, re-transmission is ideal, then the total number

of times a given packet needs to be transmitted, including re-transmissions, is a geometric random

variable, whose probability distribution is of the formπ(1−π)k−1 with π = fs(GQ/I). The expected

value of this random variable is 1/π, interpreted as the average number of times the same packet

needs to be transmitted to ensure correct reception.

The average amount of energy that needs to be spent in order to achieve the successful reception

of a data packet when transmission power is set toP can be obtained as follows. Each packet

requires an amount of energy equal to the product ofP times the length in time of a packet (given

the transmission rateR) times the average number of times the same packet needs to be transmitted

to ensure correct reception. Each bit lasts 1/Rsecs, so eachM-bit frame lastsM/Rsecs. Therefore,

the average amount of energy required by a packet isP · (M/R) · (1/π) =PM/(πR). Thus, with

transmission power fixed atP, the average number of information bits which can be successfully

transmitted with an energy budgetE is then (assuming all variables are continuous)

L

(
E÷ PM

πR

)
= ER

L
M

π
P
≡ E

L
M

R fs(GhP/I)
P

(3.1)
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3.4.2 A Refined energy-expenditure criterion

The preceding analysis has led naturally to the throughput-to-power ratio, TPR. It is tempting to

assume that the terminal should choose its power in order to maximize this index, which would result

in the maximal average number of bits transmitted before energy runs out. But it has already been

discussed that doing so leads to technical difficulties of both theoretical and practical importance.

3.4.2.1 Throughput: Earned vs. Serendipitous

In order to prevent the technicalities in question, while preserving the physical meaning and prob-

ability interpretation of the relevant quantities, one must distinguish between two additive com-

ponents of the throughput: the earned throughput, and the serendipitous (trivial) throughput. The

earned throughput is the result of the expenditure of transmission power. On the other hand, the

serendipitous throughput is that obtained without power expenditure, due to serendipity (a detec-

tor’s wild guesses), which yields a correct detection of a packet with a probability of 2−M.

3.4.2.2 An appropriate criterion

An appropriate objective for the terminal is to choose its transmission power in order to maxi-

mize the ratio of theearnedthroughput derived by a transmitter to the transmission power, or the

earned-throughput-to-power ratio (ETPR). This results in the maximal average number ofearned

successfully transmitted bits before the available energy is exhausted.

Specifically, if fs(γ) gives the probability that a packet sent by terminali is correctly detected,

when its SIR at the base station isγ = GhP/I , then the ETPR (“utility”) of terminali is defined as:

ETPR(γ) =
fs(γ)− fs(0)

P
for γ > 0 (3.2)

ETPR(0) = lim
γ↓0

ETPR(γ)

If one wishes to make the range of the numerator equal to the interval[0,1], one can divide the

ETPR by(1− fs(0)). Likewise, by multiplying, as in the original index, by the data rateR, one ob-

tains a physically meaningful QoS index in bits per Joule. However, in the subsequent development,

the scaling constants are ignored.

3.4.3 Technical behavior of the ETPR

As long asG , h, andI are fixed,k := Gh/I is a constant. Thus, maximizing( fs(GhP/I)− fs(0))/P

is equivalent to maximizingk( fs(kP)− fs(0))/kP , or simply maximizing( fs(x)− fs(0))/x with

x := kP≡ GhP/I . Much relevant information about the technical behavior of the ETPR can be

found in chapter 2, which discusses the “context-free” maximization of the ratiof (x)/x, with f an

arbitrary function with an S-shaped graph, as discussed in section 3.2. Chapter 2 shows that this

ratio is quasi-concave, and admits a unique global maximizer. The maximizer can be graphically
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identified in figure (3.1) asx∗, the abscissa of the only point at which a line tangent tof passes

through the origin. Below, the behavior of the ETPR around 0 is of special interest.

The generalized frame-success function being considered is strictly convex over the interval

[0,xf ], with xf a positive number. It is well-known that the continuously differentiable function

fs : I → Rdefined on an intervalI ⊂ℜ is strictly convex if and only if,∀x1,x2 ∈ I ,

fs(x2) > fs(x1)+ f ′s(x1) · (x2−x1)

Takingx1 = 0 andx2 equal to an arbitraryx∈ (0,xf ], the preceding inequality yields

fs(x) > fs(0)+ f ′s(0) · (x) (3.3)

This inequality, (3.3), immediately implies that iffs “starts out” convex, as assumed,f ′s(0) must

be finite. And a simple application of L’Hospital rule shows that the ETPR (see equation (3.2))

goes tok f ′s(0) when its argument goes to zero. Therefore, as long asfs has the assumed shape,

ETPR(0) =limx↓0ETPR(x) is finite. Furthermore, inequality (3.3) can be re-written ask( fs(x)−
fs(0))/x > k f ′s(0). The left hand side of this inequality is the ETPR evaluated atx (equation (3.2)),

and the right-hand side is ETPR(0). Thus the ETPR is actuallyminimizedat 0, and, for the as-

sumed family of frame-success functions, an ETPR-maximizing algorithm willneverchoose 0 as

the maximizer.

It is interesting to note that iffs were a function which “starts out” strictlyconcave,inequality

(3.3) would be reversed, and could be written as( fs(x)− fs(0))/x < f ′s(0) for anyx≤ xf . In that

case, zero would be, indeed, a (local)maximizerfor ( fs(x)− fs(0))/x.

3.4.4 Discussion

In most, if not all, practical systems, the serendipitous throughput is negligible, and so is the dif-

ference between the earned-throughput-to-power ratio (ETPR) and the (total) throughput-to-power

ratio (TPR). However, the mis-behavior of the TPR for low transmission power is of theoretical and

practical importance, as has already been explained.

By contrast, the ETPR is well-behaved throughout its entire domain. Not only does this fa-

cilitate mathematical analysis. It also means that an ETPR-maximizing algorithm will not choose

an unreasonably small transmission power because of the technical misbehavior of the objective

function. This additional reliability comes without any significant complexity cost.

Intellectual curiosity may lead one to consider which one of these two ratios, regardless of the

technical issue at the origin, come closer to an ‘ideal’ QoS index. The TPR divides the average

amount of data successfully transmitted (per time unit) by the energy spent (in each time unit). This

yields a sensible measure in bits per Joule which is appealing as a guide for energy-expenditure

decisions. On the other hand, the ETPR compares the amount of energy spent (in each time unit), to

the average amount of data (per time unit) the transmittercould not have deliveredwithout energy

expenditure. Hence, the ETPR, in fact, reflects a refinement of the intuition leading originally to
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the TPR. As it turns out, this refinement solves a problem of practical and theoretical importance,

without exacting any significant cost.

Finally, one may wonder why the transformation leading to the ETPR, which may superficially

seem ‘obvious’, was not made in earlier works. A plausible answer is that, if some increasing

function g is such thatg(0) > 0 which makesg(x)/x go to infinity asx ↓ 0, the transformed ratio

(g(x)−g(0))/x may also go to infinity asx ↓ 0. An example of this isg(x) =
√

x+ 1, for which

(g(x)− g(0))/x = 1/
√

x which clearly goes to infinity asx ↓ 0. In fact, it was shown in section

3.4.3 that for any functiong which “starts out”concave,(g(x)−g(0))/x indeed reaches a (local)

maximum at zero! One has to invoke the “initial convexity” of the frame-success function in order to

show that an ETPR-maximizing algorithm will not converge to zero. Interestingly, all this implies

that if a communication channel is ever found with aconcaveframe-success function, then an

ETPR-maximizing terminal should decline to use this channel.
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Chapter 4

Efficient Decentralized Power Allocation

via Mechanism Design

4.1 Introduction

Several recent scholarly publications, following an approach suggested by Ji, [12], recognize that

algorithms useful for engineering applications can be obtained via the formulation of radio resource

management issues, in particular power control in wireless data applications, on the foundations

of microeconomic theory. This approach is centered around thedecentralizedmaximization, un-

der appropriate rules and constraints, of a quality-of-service (QoS) index, referred to as a “utility

function”. This maximizationmay or may not involve a human user choosing resources during

transmission. The choices may be made by “software agents” inside transmitting terminals. These

agents may be entirely programmed by the network administrator, so that they behave in the best

interests of the network. Or these agents may be controlled and/or tuned or trained by the actual

human operator.

In either case, decentralized QoS maximization can be modeled as a “game”: a situation in

which each of several “selfish” agents choose a “strategy” in order to maximize its own “payoff”.

Generally, the payoff to a given player depends on the chosen strategies by all players. For instance,

in a wireless network, the transmission power chosen by a terminal becomes interference for others.

And this interference affects the payoff/utility (QoS) of all terminals.

Below, a game in which each data transmitting terminal maximizes the QoS index introduced in

chapter 3 is studied. This index is theearned-throughput-to-power ratio (ETPR), which was shown

to exhibit good mathematical behavior, be physically significant, and attain or surpass the intuitive

appeal of related measures already accepted by the scientific literature. The data rates are fixed but

may be different among the terminals.

A key solution concept is a Nash Equilibrium (NE); i.e., an allocation (a strategy per player)

such that no player would be better off byunilaterally “deviating” (changing strategy). In this

game, a NE specifies a power level per terminal, such that no terminal would increase its QoS index
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by unilaterally adjusting its power. It is made clear below, that, if transmission power is limited, a

Nash equilibrium does exist. And even if power is unlimited, a Nash equilibrium may exist under

certain circumstances. However, NE tend to be “inefficient”, which is verified in this case. The

challenge is to get selfish terminals to move toward a more efficient operating point “on their own”.

An approach to guide competing selfish entities toward a “socially optimal” outcome is to design

an appropriate set of “rules of interaction”; i.e., a set of procedures, penalties and rewards designed

to guide the entities toward a desired operating point. In order to achieve an efficient decentralized

allocation of power among mutually interfering terminals, this chapter proposes the application of

a relatively simple mechanism introduced in [43]. In order for this mechanism to work, there must

exist one “transferable good” with which terminals can compensate each other. This good could be

money, or some form of service credits, such as time of usage (“minutes”).

Below, first, the system model is built. Then, the game in which each data transmitting terminals

chooses its transmission power in order to maximize its QoS index, without any mechanism present,

is analyzed. Subsequently, it is shown by two methods that the NE of this game is “inefficient”.

Finally, the compensation mechanism is introduced and discussed.

4.2 System Model

This work discusses the application of a mechanism (a set of rules for the interaction of some

“players”) to guide some mutually-interfering data-transmitting terminals to an “efficient” allocation

of power. The mechanism could be applied under many physical layer configurations, and multi-

access schemes. For simplicity, this work focuses on a single CDMA cell.

In this simple model, the following quantities and/or concepts are of interest:

i) N is the number of terminals transmitting data simultaneously to the base station. For most of

the development,N = 2 is assumed. Extensions are discussed at the end.

ii) Ri bits per second is the source data rate of terminali

iii) RC chips per second is the chip rate (“bandwidth”) of the channel

iv) Gi = RC/Ri is the processing gain of terminali.

vii) fS(Giαi) is the probability of correct reception of a data packet, whereαi is the carrier-to-

interference ratio (CIR) of the receiver tuned to transmitteri, and is defined by:

αi =
Pihi

∑N
j=1
j 6=i

Pjh j +σ2
=

Qi

∑N
j=1
j 6=i

Q j +σ2

.=
Qi

Ii
(4.1)

In this expression,Pi ≤ Pmax is the transmitted power of terminali, hi is the path gain from terminal

i to the base station, andσ2 is the noise power in the base station receiver.Qi = Pihi is the received

power at the base station in the signal transmitted by terminali. For notational convenience,Ii
denotes the total level of interference experience by terminali.

viii) Absent of other incentives, the earned-throughput-to-power ratio (ETPR) discussed in

chapter 3 is the quality-of-service (QoS) index whose maximization is desired by each terminal.
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It is obtained as :
Ri (L/M)( fS(Giαi)− fS(0))

Pi

.= Rc

(
L
M

)
hi

f (Giαi)
GiQi

L/M is the ratio of the number of information bits in a data packet to the total number of bits in the

packet. f (x) .= fS(x)− fS(0) has been set.fS(0) is typically very small, but, as discussed in chapter

3, this correction is necessary to avoid technical and practical problems.

It is assumed thatall that is knownabout f is that its graphs has an “S-shape”, as shown in

fig. 3.1. This should accommodate most physical layer configurations of practical interest. The

technical characterization of a function with an “S-shaped” graph is discussed in chapter 2.

4.3 Decentralized ETPR Maximization: No Mechanism

4.3.1 Objective Function and constraints

For a given level of interference,Ii , terminal i wants to choose its transmission power,Pi , to

maximize:
Gi

Ii

f (GiQi/Ii)
GiQi/Ii

or simply
f (x)
x

with x
.= Gi

Qi

Ii
(4.2)

subject to:

0≤ x≤ xMi with xMi =
Gi

Ii
QMi =

Gi

Ii
hiPmax

4.3.2 Best Response Function

As discussed in section 3.4.3, the maximization of the ratiof (x)/x for function f as described in

section 3.2 is well understood. Chapter 2 shows thatf (x)/x is quasi-concave, and admits as unique

global maximizerx∗, which is the only positive number satisfyingx f ′(x) = f (x) (see figure (3.1)).

This implies that the maximizer sought in the problem of section 4.3.1 is the smallest ofxMi and

x∗. Let x∗i = min(x∗,xMi ). It follows that, for a given interference levelIi , transmitteri will respond

with aP∗i such that

Q∗
i =

Ii
Gi

x∗i = min

(
Ii
Gi

x∗,hiPmax

)
(4.3)

4.3.3 Nash-equilibria

In this context, a Nash equilibrium is a power vector, specifying a power level for each active

terminal, such that no terminal can increase its quality of service byunilaterallychanging its power

level.

The preceding development indicates that the “best response” of each terminal is such that, for a

given interference level, each would like to set its transmission power to achieve a “received” signal-

to-interference ratio ofx∗, a constant determined by the physical layer through the frame-success

function. When a terminal cannot reach the power level leading tox∗, it transmits at the highest

possible power level. However, the interference level is not a fixed constant, but rather, a variable
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determined by the transmission power levels of all active terminals. Thus, it is, in principle, unclear

whether an equilibrium power vector will exist.

It can be shown on the basis of a well-known result by Gerard Debreu that, if transmission

power is limited and utility functions are quasi-concave (which the ETPR is), a Nash-equilibrium

does exist (see [33] for further details). Nevertheless, below the conditions for the existence of

Nash-equilibria of various forms (with and without transmission power limits) are explored “from

first principles”, without explicitly invoking Debreu’s or similar results.

4.3.3.1 Equal-received-SIR Nash equilibrium (ERSNE)

This section seeks conditions under which a solution exists for a set ofN equations of the form:

Qi

Ii
≡ Qi

∑N
j=1
j 6=i

Q j +σ2
=

x∗

Gi
:= αi (4.4)

This problem is fully discussed in appendix B. The equations defining theαi ’s (equation (4.4)) lead

to a system of equations:
1 −α1 · · · −α1

−α2 1 · · · −α2
...

...
...

...

−αN −αN · · · 1




Q1

Q2
...

QN

=


α1

α2
...

αN

σ2 (4.5)

Then, one can show that if the condition

s :=
N

∑
k=1

αk

1+αk
≡

N

∑
k=1

x∗

x∗+Gk
< 1 (4.6)

is satisfied, the system (4.5) has a unique solution, in which each component of the received power

vector is given by:

Q∗
k =

σ2

1−s
αk

1+αk
=

σ2

1−s
x∗

x∗+Gk
(4.7)

Evidently, if all Gi ’s are identical, thenαi = α = x∗/G := 1/Ĝ, and the feasibility condition given

by (4.6) reduces to:

s=
Nα

1+α
:=

N

Ĝ+1
< 1 (4.8)

Likewise, equation (4.7) becomes:

Q∗
k =

σ2

Ĝ−N+1
:= Qsym(N,σ2) (4.9)

This development leads to the following conclusion about the feasibility of the ERSNE. In order
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for the ERSNE to be feasible, condition (4.6) must be satisfied. When this condition is satisfied,

equation (4.7) gives the levels of received power which would lead the terminals to the desired SIR,

x∗. Therefore, the ERSNE may fail for either of two reasons: failure of condition (4.6), or inability

by any terminal to reach the required power level. In either case, the possibility that a non-ERS

equilibrium exists needs to be explored.

4.3.3.2 ERSoMP-1 Nash Equilibrium

This section explores conditions under which a Nash equilibrium exists in which one terminal op-

erates at maximal power, while all others operate at whichever power level is necessary to achieve

the optimal SIR ofx∗. This case will be identified as an ERSoMP-NE-1 for an equal-received-SIR

or maximal-power Nash equilibrium of order 1.

For expositional convenience, it is assumed that terminalN is the one operating at maximal

power. In this scenario, the received power from terminalN, QN, is presumed fixed athNPmax:= Q̄N,

while others need to be found to satisfy :

Qi

∑N−1
j=1
j 6=i

Q j +Σ2
=

x∗

Gi
:= αi (4.10)

whereΣ2 := Q̄N + σ2 . For i = 1. . .(N− 1) the value of eachαi is the same as in the original

equation (4.4).

Evidently, the equations of the form (4.10) lead to a system analogous to (4.5), except that it is

of orderN−1, andΣ2 replacesσ2. From the development leading to condition (4.6), the feasibility

condition for the solution of this new system is:

s1 :=
N−1

∑
k=1

αk

1+αk
< 1 (4.11)

Likewise, if inequality (4.11) is satisfied, a unique solution exists, in which the firstN−1 compo-

nents of the received power vector satisfy:

Q∗
k =

Σ2

1−s1

αk

1+αk
(4.12)

Notice that if inequality (4.6) is satisfied, so is inequality (4.11). But the converse is obviously not

true.

Again, if ∀i, αi = x∗/G = α, the feasibility condition given by (4.11) reduces to:

s1 =
α(N−1)

1+α
=

N−1

Ĝ+1
< 1 (4.13)

and equation (4.12) becomes:

Q∗
k =

Σ2

1−s1

α
1+α

=
Q̄N +σ2

Ĝ−N+2
(4.14)
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Even if the new feasibility condition (4.11) is satisfied, and each of the terminals from 1 toN−1

can reach the required power level (4.12), the possibility that this allocation maynot be a Nash

equilibrium needs to be explored. According to the development in section 4.3.2, the best-response

function of terminalN is given by equation (4.3) asQ∗
N = min

(
IN
Ĝ

,Q̄N

)
. This means that if̄QN >

IN/Ĝ, terminalN would be better off by lowering its power, and the allocation being considered

would fail to be a Nash equilibrium. This possibility is explored below for the identical-rates case.

The extension of this procedure to consider nonidentical rates is straightforward.

On the basis of equation (4.14),IN can be obtained as

IN = (N−1)
Q̄N +σ2

Ĝ−N+2
+σ2 (4.15)

In order to ascertain whether̂GQ̄N < IN, this inequality can be expressed as

Q̄N

(
Ĝ− N−1

Ĝ−N+2

)
?
< σ2

(
N−1

Ĝ−N+2
+1

)
or, sinceĜ−N+2 > 0 by condition (4.13), as

Q̄N[Ĝ(Ĝ−N+2)−N+1]
?
< (Ĝ+1)σ2

Notice thatĜ(Ĝ−N+1+1)−N+1 can be written aŝG(Ĝ−N+1)+(Ĝ−N+1) which can be

factored as(Ĝ+1)(Ĝ−N+1). This leads to checking whether,

Q̄N(Ĝ−N+1)
?
< σ2 (4.16)

If condition (4.8) is satisfied, which means that, without a power limitation, the original ERSNE

would have been feasible, then inequality (4.16) can be written asQ̄N < σ2/(Ĝ−N + 1). But

the right-hand side of this inequality is precisely the received power level required for the equal-

received-SIR Nash Equilibrium (ERSNE) ( equation(4.9)). Thus, inequality (4.16) is satisfied if

condition (4.8), which determines the feasibility of the power-unlimited ERSNE, was satisfied, but

terminalN could not, because of its power constraint, reach the power level necessitated by ERSNE.

On the other hand, if condition (4.8) failed, which means that the original ERSNE would have

beenimpossibleeven without a power limitation, then the left-hand-side of inequality (4.16) is

negative, which directly implies that this inequality is necessarily satisfied.

In conclusion, the ERSoMP-NE-1 exists whenever three requirements are met: (i) condition

(4.11) is satisfied, (ii) each of the terminals from 1 toN− 1 can reach the required power level

(4.12), and (iii) the ERSNE failed to exist. (For this purpose, it doesnotmatter whether the ERSNE

failed because condition (4.8) failed, or because terminalN could not reach the required power

level).
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4.3.3.3 ERSoMP Nash-Equilibrium of order M

The preceding development suggests the following extension to the more general equilibrium in

whichM terminals operate at maximal power, with the remaining ones operating with received SIR

equal tox∗; i.e., an equal-received-SIR or maximal-power Nash equilibrium of orderM (ERSoMP-

NE-M). As discussed in the introduction to section 4.3.3, given the quasi-concavity of our utility

function, such equilibrium exists, whenever transmission power is limited [33].

For expositional convenience, it is assumed that the terminals have been labeled so that ifM

terminals cannot reach the required power level, they are terminalsN−M + 1 throughN. For

instance, this will happen if both the transmission bit rates, and the maximal transmission power

levels are constant across terminals, but the path gains satisfyh1 > · · ·> hN.

First, check whether condition (4.8), which determines the feasibility of the power-unlimited

ERSNE, is satisfied, and all terminals can reach the appropriate power level given by equation (4.7).

If this is the case, then the ERSNE is the only available NE. If condition (4.8) fails and transmission

power is unlimited, thenno NE is available. If an ERSNE isnot possible (for whatever reason),

and transmission power is limited, then set terminalN at maximal power and determine whether

an ERSoMP-NE-1 is possible. If condition (4.13) fails, or if this condition is satisfied but one or

more of the firstN−1 terminals cannot reach the required power level, (equation (4.12)), then an

ERSoMP-NE-1 isnot possible. Hence, set both terminalN and terminalN−1 at maximal power,

and proceed to verify whether an ERSoMP-NE-2 is possible. Continue this recursion, until an

ERSoMP Nash equilibrium of orderM is reached.

4.3.4 Discussion

A game in which terminals carrying multi-rate traffic choose transmission power in order to max-

imize the ETPR index has been analyzed. The key solution concept is a Nash equilibrium; i.e., an

allocation such that no terminal would be better off byunilaterally “deviating”. Closed-form equi-

librium conditions and power levels has been derived from first principles. It has been shown that all

terminals want the same signal-to-interference ratio (SIR), but, because of power limitations, some

terminals cannot reach the necessary power level. At equilibrium, a number of terminals transmit

at maximal power, and the others achieve the same optimal SIR. This SIR value can be easily iden-

tified in the graph off as the abscissa of the only point where a ray emanating from the origin is

tangent to the graph (seex∗ in fig. 3.1). A basic rationale to search for these equilibria has been

given.

4.4 Efficiency Analysis of the Equilibria

4.4.1 Overview

With limited transmission power, an equilibrium always exists. And even with unlimited power,

an equilibriummayexist if certain sum of simple terms is less than 1. However, the equilibrium
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allocation can be shown to be inefficient (not Pareto optimal): there are other feasible allocations

under which the utility of some terminals could be increased without decreasing the utility of any

other. To show the inefficiency of the equilibrium, two separate arguments are given. The first

argument follows that given in [33], and concludes that if the terminals operating at the optimal

SIR lower their equilibrium power levels by certain fraction, the utility ofeachterminal increases.

Thus, equilibrium power levels are “too high”. Subsequently, an alternative way of showing that

the equilibrium power levels are inefficient based on economics theory is provided, for a 2-terminal

situation.

4.4.2 Description of the equilibrium allocation

As discussed in section 4.3.2, each terminal wants to operate with SIRx∗(seex∗ in fig. 3.1). If

the conditions := ∑N
k=1x∗/(x∗+ Gk) < 1 is satisfied, and power limits are sufficiently high, each

terminal can reach the received power level leading to the SIRx∗. When all terminals have the same

transmission rate, this power level is, as a multiple of the noise average power,:

q∗ =
1

G/x∗−1
→ u∗i ∝ hiRi(G−x∗)

f (x∗)
x∗

u∗i is the utility derived at equilibrium by terminali.

4.4.3 Inefficiency of equilibrium allocation-I

If all terminals simultaneously change their received power toεq∗, with 0< ε≤ 1, then the new SIR

is

γε =
Gq∗

(N−1)q∗+ ε−1

and the new utility level isuε
i ∝ f (γε)/εq∗.

∂uε
i

∂ε
∝
(

f ′(γε)
∂γε

∂ε
− ε−1 f (γε)

)
∂γε

∂ε
=

Gq∗ε−2

((N−1)q∗+ ε−1)2 =
1

Gq∗

(γε

ε

)2

∴
∂uε

i

∂ε
∝

γε

ε
γε f ′(γε)

Gq∗
− f (γε)

Recall that forε = 1, γε = x∗ and f (x∗) = x∗ f ′(x∗). Thus,

∂uε
i

∂ε

∣∣∣∣
ε=1

∝ f (x∗)
(

x∗

Gq∗
−1

)
∝

1
(N−1)q∗+1

−1 < 0

The fact that this derivative is negative forε = 1 implies that for some scaling factorε such that

0 < ε < 1, if all terminals simultaneously scale down their equilibrium power levels byε, each

terminal would increase its utility over its equilibrium value.
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This argument only considers a situation in which all terminals can reach the universally desired

SIR. However, [33] extends this argument to show that, even when some terminals must operate at

maximal power, if all the terminals operating at the optimal SIR scale down their equilibrium power

levels by an appropriate factor, the utility ofeachterminal, including those operating at maximal

power, increases.

4.4.4 Inefficiency of equilibrium allocation-II

The first-order necessary conditions that must be met by an allocation in order to be Pareto-efficient

are the same as those of an allocation that maximizes a weighted sum of the utilities of each terminal

[42, p. 332]. Therefore, an allocation that fails to meet these conditions isnot Pareto-efficient.

Below, it is verified for the two terminal situation that the Nash equilibrium of the game played by

two data-transmitting terminals fails the necessary conditions for Pareto-efficiency, with the possible

exception of the situation in which both terminals operate at maximal power.

For two terminals, the centralized utility-maximization problem is:

maxq1,q2 β1h1
f (γ1)
G1q1

+β2h2
f (γ2)
G2q2

subject to q1 ≤ q̄1 ; q2 ≤ q̄2

βi denotes an arbitrary weight,qi := Qi/σ2 and

γi =
Giqi

q j +1
→ ∂γi

∂qi
=

γi

qi
;

∂γi

∂q j
=− γ2

i

Giqi

The augmented objective function (Lagrangian) is:

β1h1

G1

f (γ1)
q1

+
β2h2

G2

f (γ2)
q2

+µ1(q̄1−q1)+µ2(q̄2−q2)

The corresponding first-order necessary conditions for a maximum are: β1h1
G1

γ1 f ′(γ1)− f (γ1)
q2

1
− β2h2

G2

γ2
2 f ′(γ2)
G2q2

2
+µ1

−β1h1
G1

γ2
1 f ′(γ1)
G1q2

1
+ β2h2

G2

γ2 f ′(γ2)− f (γ2)
q2

2
+µ2

=

[
0

0

]
(4.17)

µi(q̄i −qi) = 0 andµi ≤ 0 (4.18)

For an interior solution,µi = 0, and equation (4.17) implies,

β1h1

G1

γ1 f ′(γ1)− f (γ1)
q2

1

=
β2h2

G2

γ2
2 f ′(γ2)
G2q2

2

(4.19)

β2h2

G2

γ2 f ′(γ2)− f (γ2)
q2

2

=
β1h1

G1

γ2
1 f ′(γ1)
G1q2

1

(4.20)

Quite clearly, a finite power vector in whichγ1 = γ2 = x∗ cannot possibly satisfy equations (4.19
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and 4.20), becausex∗ f ′(x∗) = f (x∗), which would make the left-hand side of these equations equal

to zero, while the right-hand side is greater than zero (f ′(x) > 0).

If terminal 2 was operating at the optimal SIRx∗, with terminal 1 operating at maximal power,

µ2 = 0, and equation (4.20) would still apply. But again, the left-hand side of equation (4.20) would

continue to equal zero, while its right-hand side would be greater than zero. A similar situation

happens if the terminals switched roles.

Finally, with both terminals operating at maximal power,qi = q̄i , and the complementary-

slackness condition, equation (4.18), would requireµi ≤ 0. First, observe that :

γ̄i :=
Gi q̄i

q̄ j +1
−→ Gi q̄i

γ̄i
≡ q̄ j +1

From equations (4.19 ),

µ1 =
β2h2

G2

γ̄2
2 f ′(γ̄2)
G2q̄2

2 − β1h1

G1

γ̄1 f ′(γ̄1)− f (γ̄1)
q̄1

2

≡ β2h2
f ′(γ̄2)

(q̄1 +1)2 −
β1h1

G1

γ̄1 f ′(γ̄1)− f (γ̄1)
q̄1

2 (4.21)

Notice thatγ̄1 f ′(γ̄1)− f (γ̄1) has the sign of the derivative off (t)/t evaluated at̄γ1. Chapter 2 shows

that this ratio is “single-peaked”, and reaches its maximum atγ0. Thus, its derivative is negative

for any t > γ0. Therefore,γ̄1 > γ0 makesµ1 positive. Thus, operating at maximal power when the

preferred SIRγ0 is achievable is not Pareto-efficient, as intuition suggests. On the other hand, with

γ̄1 < γ0, which is really the interesting case, the second term in the right-hand side of equation (4.21)

becomes negative, but the first one remains positive. A similar analysis applies toµ2. So, this test is

inconclusive when both terminals operate at maximal power. This is intuitively appealing. If both

terminals are very poorly situated with respect to the base station, it could be perfectly reasonable

(“efficient”) for both of them to operate at maximal power.

µ2 =
β1h1

G1

γ̄1
2 f ′(γ̄1)
G1q2

1

− β2h2

G2

γ̄2 f ′(γ̄2)− f (γ̄2)
q2

2

≡ β1h1
f ′(γ̄1)

(q̄2 +1)2 −
β2h2

G2

γ̄2 f ′(γ̄2)− f (γ̄2)
q2

2

4.5 A Simple Efficiency-Inducing Mechanism

Section 4.4 shows that the allocation arising as a Nash equilibrium of the game in which each data

terminal chooses its transmission power to maximize the ETPR is not efficient. The challenge is to

guide the “selfish” terminals toward an efficient operating point “on their own”.

An approach employed in [33] to induce the terminals toward a lower-power equilibrium is

to introduce a “tax” on transmission power. That is, terminals are programmed to maximize an

expression of the formu(p; I)−cp, whereu(p; I) denotes the utility of the terminal when its trans-

mission power isp, and its interfering power (caused by noise and the other terminals) equalsI ;

andc is a “tax” on power. This leads to lower power levels at equilibrium, and an increase in the

utility to the terminals. However, there are several problems with this approach: (i) while the new
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equilibrium allocation is an improvement, it is still inefficient; (ii) there is no clear and convenient

expression giving the optimal tax, and (iii) the approach may require certain additional impositions

and technical assumptions which are best avoided.

This section proposes and discusses the application of a “mechanism” introduced in [43] to

guide the terminals toward an efficient allocation of transmission power. In much of the develop-

ment below, only two terminals are considered. However, the discussion section addresses some of

the issues involved in a multi-terminal extension of this approach.

4.5.1 What is a mechanism?

A “mechanism” is a set of procedures, penalties and rewards intended to guide selfish entities toward

a desired outcome. An example of a simple, well-known mechanism is Vickery’s Second Price

Auction. In this situation, a valuable object if offered for sale to several interested parties. Each

submits a sealed bid, and the object is awarded to the highest bidder. However, the winner only

pays the second-highest bid! The key advantage of this auction is that it has been proved that each

player’s best response is to bid its exact true valuation of the object, which is private information

only known to him/her. That is, in this arrangement, “truth telling” is optimal [45].

4.5.2 Economic Model

In order to achieve an efficient decentralized allocation of power among mutually interfering ter-

minals through the proposed mechanism, there must exist one transferable good (say money) with

which terminals can compensate each other.

The basic economic model is that of partial-equilibrium analysis and a quasi-linear utility func-

tion, as discussed, for instance in [42, Ch. 10]. Each terminal is assumed to have both an energy

budget,Ei , and a monetary budget,Di . The terminal’s payoff isβiBi +yi where (i)βi is the monetary

value to the terminal of one information bit successfully transferred, (ii)Bi is the (average) number

of (“earned”) information bits the terminal gets to successfully transfer by the time its energy runs

out, and (iii)yi is the amount of money the terminal has left after compensation, and penalties are

computed.

Without penalties and rewards, the terminal keeps its complete monetary budget,Di , intact.

Thus, the terminal’s payoff isβiBi + Di . But when a mechanism is introduced, the second term

becomesDi plus any reward/compensation received, minus any penalty/compensation paid. This

will be further clarified below.

4.5.3 The compensation mechanism

The mechanism is implemented in two stages: (i) announcement: the terminals announce the prices

c1
12, c1

21, c2
21, c2

12, where the superscript indicates which terminal sets the price, and the subscripti j

denotes that money flows fromi to j. (ii) choice: each terminal chooses its power level to maximize

its payoff, given the announced prices. If the compensation offered by terminali does not match
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what terminal j wants, terminali must pay a penalty
(

ci
i j −c j

i j

)2
to a third party. Thus, once all

choices have been made, the payoff to terminal 1 is :

β1︸︷︷︸
$/bits

B1(P1;P2)︸ ︷︷ ︸
"earned" bits

+ D1︸︷︷︸
budget

+c2
21P2︸ ︷︷ ︸

from 2

−c2
12P1︸ ︷︷ ︸
to 2

−
(
c1

12−c2
12

)2︸ ︷︷ ︸
Penalty

(4.22)

4.5.4 Describing the equilibrium for the asymmetric case

Reference [43] shows that the allocation arising from this game is efficient. Nevertheless, it is

interesting to describe the powers and prices arising at equilibrium. This is done below for the

special case in which terminal 1 interferes with terminal 2 butnotvice-versa (successive interference

cancellation (SIC) decoding). In this case,c2 denotes the unit compensation terminal 2 (“injured”

terminal) demands, andc1 the compensation offered by terminal 1 (interferer). Since the injured

terminal makes no payments, it is convenient to set its monetary budgetD2 = 0.

4.5.4.1 Second-stage payoffs

After all choices have been made, the payoffs for the asymmetric game are :

β1︸︷︷︸
$/bits

B1(P1; I1)︸ ︷︷ ︸
bits

+ D1︸︷︷︸
budget

−c2P1︸︷︷︸
to2

−(c1−c2)
2︸ ︷︷ ︸

penalty

(4.23)

β2︸︷︷︸
$/bits

B2(P2; I2)︸ ︷︷ ︸
bits

+ c1P1︸︷︷︸
from 1

−(c2−c1)
2︸ ︷︷ ︸

penalty

(4.24)

As discussed in chapter 3, for a given level of interference,Ii

Bi(Pi , Ii) = Ei
L
M

Ri
f (GihiPi/Ii)

Pi
≡ RcEi

L
M

hi

Ii

f (xi)
xi

(4.25)

with xi the signal to interference ratio (SIR) at the receiver (L/M is the ratio of information bits to

total bits in a packet) . For a givenIi , choosing transmission power is equivalent to choosingxi .

With a slight abuse of notation,Bi(xi , Ii) can replaceBi(Pi , Ii).

4.5.4.2 Characterizing the equilibrium

4.5.4.2.1 General approach This is a 2 stage game. To solve it, one first looks at the second

stage (choosing the power levels), as if the first-stage choices had been pre-determined. This gives

power levels that are a function ofc1 andc2. With this information, the first-stage of the game

can be solved. But notice from eq. (4.23), that the choice ofc1 only impacts the interferer’s payoff

through the penalty term,(c2− c1)2. c1 doesinfluence the power chosen by terminal 2, but this

power has no effect on the interferer’s payoff because, by assumption, terminal 1’s only impairment

is random noise. Thus, at equilibriumc1 = c2 because it is always optimal for the interferer to
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avoid the penalty. Hence, in characterizing the equilibrium allocation, one can focus on the case

c1 = c2 = c.

4.5.4.2.2 Interferer’s power choice By assumption, terminal 1 interferes with terminal 2 but

not vice-versa. That is,I1 = σ2 , while I2 = P1 +σ2.

Terminal 1 will chooseP1 so thatx1 maximizes

Rc
L
M

E1

σ2h1β1
f (x1)
x1

−c
σ2

G1h1
x1 ≡ β̂1u(x1)− ĉ1x1 (4.26)

where for notational convenience

u(x1) :=
f (x1)
x1

; β̂1 :=
L
M

RcE1h1

σ2 β1 ; ĉ1 :=
cσ2

G1h1

Equation (4.26) has the general formu(x)−cx.

4.5.4.2.3 Maximizingu(x)−cx Chapter 2 shows that forf an S-curve,f (x)/x is “single peaked”,

as shown in fig. 4.1. Thus, the maximization ofu(x)−cx, whereall that is knownaboutu is that it

is “single peaked”, needs to be understood.

As fig. 4.1 clearly shows, ifc exceeds certain critical value,cL, the linecx lies entirely over the

curveu(x) except at the origin. Thus,u(x)−cx< 0 for any positivex, which implies thatu(x)−cx

has its maximum atx = 0. At the other extreme, ifc≈ 0, the maximum occurs atx∗, which, as

discussed in chapter 2, is shown in fig. 3.1 at the tangency point betweenf and a line from the

origin. For 0< c≤ cLthere is an interval(a,b) on whichu(x) > cx (whenc = cL, a andb “merge”

into xL). The functionu(x)− cx is continuous; therefore it must have a maximum over the closed

and bounded interval[a,b]. The maximum occurs at the pointx∗∗ whereu′(x) = c (that is, a point

at which a tangent to the curve is parallel to the line).

With power limitations, the terminal may not be able to exceed a certain maximal SIR ¯x. In this

case, ifa < x̄≤ x∗∗ it is optimal for this terminal to operate at ¯x. However, if x̄ < a the optimal

choice for this terminal is 0, sinceu(x)− cx< 0 for 0< x < a. If x̄ = a the terminal is indifferent

between choosing 0 ora. In the interest of simplicity, it is assumed that when operating and not

operating give an identical utility, the terminal will choose to operate.

In conclusion, the problem of maximizingu(x)−cx is well defined, and has a solution. Depend-

ing upon the value ofc andx̄, the maximizer could be 0, ¯x, or x∗∗. Thus, for fixed ¯x, the function

x(c) giving the maximizer ofu(x)−cx is well-defined.

4.5.4.2.4 Injured terminal’s power choice From the preceding analysis, it is clear that for a

given c one can properly refer to a functionx1(c) giving the optimal SIR for the interferer as a

function of the unit compensation paid.x1(c) directly yieldsP1(c), the corresponding transmission

power level.
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Figure 4.1:x∗∗ uniquely maximizesu(x)−cx, unlessc > cL, in which case, 0 is the maximizer.
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Terminal 2 will chooses its power level to maximize

Rc
L
M

E2

I2
h2β2

f (x2)
x2

+c
σ2

G1h1
x1 ≡ β̂2u(x2)+ ĉ1x1 (4.27)

Presumably, at this stage,c has already been chosen, and so has the interferer’s power as a function

of c. Clearly, terminal 2 must choose its power so that its received SIR maximizesu(x2) := f (x2)/x2.

As discussed in chapter 2, the maximizer occurs atx∗, which is shown in fig. 3.1 at the tangency

point betweenf and a line from the origin.

4.5.4.2.5 Injured terminal’s price choice Through the development in sections 4.5.4.2.2 through

4.5.4.2.4, the second stage (“choice”) of the asymmetric compensation game has been characterized.

The same must be done for the stage of the game in which terminals announce their prices. As re-

marked in section 4.5.4.2.1, at equilibrium the interferer’s compensation will match that demanded

by the injured terminal. Thus, all that remains is to specify the price that terminal 2 will demand.

This is done with the understanding that for any chosen compensation (c), the interferer will choose

its power so that its received SIR isx1(c) (section 4.5.4.2.3), and the injured terminal will choose to

operate at the SIRx∗ (section 4.5.4.2.4).

The injured terminal will choosec to maximize its overall utility (taking into account what will

happen in the next stage of the game). That is, it will maximize

v(c) :=
A

h1P1(c)+σ2 +cP1(c) (4.28)

with

A := Rc
L
M

h2E2β2
f (x∗)
x∗

v(c) is a single variable function which can be readily maximized, whether analytically or numeri-

cally. P1(c) gives the optimally chosen power of the interferer for any givenc, which follows from

the analysis in section 4.5.4.2.3. Disregarding power constraints, the functionx1(c) (optimal SIR or

the interferer) can be assumed to vary smoothly withc (i.e., to be continuously differentiable), over

the interval[0,cL] (see fig. 4.1), and the same can be said aboutP1(c). Over this range,v(c) is then

a composite function of continuous functions, which is therefore continuous, and must have a max-

imum over a closed and bounded set. Therefore,c∗ := argmaxv(c) is well defined. Furthermore,

with P1(c) differentiable over[0,cL], the derivative ofv(c) is well defined, and can be obtained and

set to zero.

v(c∗) is the best the injured terminal can do, with a price low enough to induce the interferer to

pay and operate. Ifc > cL (sayc = cL +ε), the interferer will choosenot to operate, deriving a total

utility of D1, its original monetary budget. In this case, the injured terminal will have the channel to

itself, will receive no compensating money, and will get the the bits/Joule performance of a random

noise channel (sayB0 total bits, given its energy budget). Thus, if terminal 2 setsc = cL + ε, its

utility will be β2B0. This must be compared againstv(c∗), for a final choice of the pricec (eitherc∗



42

or cL + ε).

4.5.5 Discussion

A compensation mechanism has been applied to the achieve an efficient allocation of power among

two mutually-interfering, data-transmitting terminals. The mechanism is efficient because it induces

the terminals to “fairly” compensate each other, by way of money or some transferable good. With

2 mutually interfering terminals, each terminal must quote two prices: one tobe paid tothe other as

compensation; the second tobe chargedas compensation. But each terminal faces a penalty if its

offered price differs from what the other wants as compensation.

The intuition of this mechanism can best be captured by considering a 2-terminal situation in

which only terminal 1 interferes with terminal 2 (butnot vice-versa), which can actually happen

with successive interference cancellation (SIC). Terminal 2 must declare the amount of the transfer-

able good it wishes tochargeterminal 1 as compensation for each unit of interference. Likewise,

terminal 1 must quote the price it offersto payterminal 2 as compensation. But terminal 1 faces a

penalty increasing with any difference between its offered price and what terminal 2 demands. At

equilibrium, the interfering terminal will pay the true cost caused on the other terminal by its inter-

ference, which is precisely the “fair thing to do”. This is so because if the amount paid by terminal

1 exceeded the cost its interference causes on terminal 2, then terminal 2 would in fact “make a

profit” per unit of interference. But then, it would be optimal for this terminal to induce terminal 1

to increaseits interference, and to do so, terminal 2 woulddecreasewhat it charges.

The development provides further insights into the equilibrium allocation, for the special case in

which terminal 1 interferes with terminal 2, butnotvice-versa (SIC decoding). The injured terminal

will operate at the optimal SIR,x∗ (fig. 3.1), which is the bits-per-Joule-maximizing value a terminal

would choose with random noise as its only impairment. The interferer will either stay out of the

channel, or pay the exact compensation pricec demanded by terminal 2, and operate at the SIR

x1(c) illustrated in fig. 4.1.x1(c) is always less thanx∗. The optimalc maximizesv(c), a relatively

simple function (eq. (4.28)) which has a continuous derivative for values ofc that are low enough

to entice the interferer into operating. A complete characterization and understanding of the power

and money allocations arising from this mechanism necessitates additional analytical and numerical

work.

This framework can be extended to accommodate many mutually-interfering terminals, and can

be applied outside the cellular architecture. With many terminals, the exchange of pricing signals

between terminals becomes an issue. However, the fact that terminals only care about the total

interference helps, because a terminal’s charge per unit of interference should be independent of the

source of the interference. But each terminal may, in principle, quote a different value. The rate of

convergence toward the equilibrium prices and power levels is also a concern. But [43] shows that

a simple updating algorithm exists that leads to the equilibrium, even when terminals don’t know

“everything” about each other. In an ad-hoc network, the main challenge may be to set up a practical

accounting system to track down the compensating payments among terminals.
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The impact of this mechanism on several issues involving communication networks should be

explored. For instance, it is known that mobile terminals using a cellular system from “bad loca-

tions” can stress the system, and reduce its capacity. This can be more severe if a poorly-situated

terminal transmits media content (e.g., video) that demands a high data rate, and an inflexible signal-

to-interference target. These terminals should, ideally, defer transmission pending a better location,

unless their information is “urgent”, which is only known to the transmitter. Implementing a mech-

anism such as this should induce a more judicious use of the network by these terminals.
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Chapter 5

Power and Coding Rate Allocation for

Scalably Encoded Information

5.1 Introduction

At the foundations of the JPEG 2000 image compression standard there are ideas found in the em-

bedded zero-tree wavelet coding (EZW) algorithm introduced by [36], a technique which produces

a fully “embedded” bit stream[41]. An embedded bit stream is “scalable”, in the sense that it can be

truncated at an arbitrary point, and decoded. If bits are decoded as they are received, at any instant

the “quality” of the decoded information is the best available for the number of bits received up to

that moment. Thus, an image compression ratio can be varied simply by truncating the coded bit

stream. Similar ideas can be applied to video coding. In fact, fine-granular scalability (FGS) is at

the core of the MPEG-4 video-compression standard.

Scalable coding can be fruitfully exploited in many practical applications, including: (i) im-

age database browsing (ii) progressive image transmission (where the consumer can examine the

improving decoded image as bits are received, and can abort the transfer when the image quality

reaches a satisfactory level), and (iii) multimedia web serving (a single file can serve a variety of

consumer requirements and capabilities, and also various congestion/channel conditions).

These files introduce interesting resource management issues, because their special structure can

be exploited to allocate scarce resources efficiently. Such analysis necessitates a relatively simple

model combining the properties of analytical tractability, with flexibility to accommodate a wide

variety of situations. This work proposes such model.

In the situation under study, a terminal with a limited supply of energy and a long sequence of

scalably encoded images to transfer over a wireless link seeks to manage its energy efficiently. At

the center of this inquiry is a function yielding the “quality” of the resulting information (image) in

terms of the fraction of the encoded file which is chosen for decoding. Below, it is postulated that all

that is known about this function is that its graph is an S-curve, as introduced in [29] and discussed

further in [30] (see fig. 5.2). In chapter 1, this relation was arrived at via rate-distortion theory.
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As discussed in previous chapters, there are practical reasons why the S shape is chosen. An

arbitrary S-curve starts out convex and smoothly transitions to concave. But, as shown by fig. 5.2,

the inflexion (transition) point is arbitrarily placed. Therefore, this curve in fact contains as special

cases a (“mostly”) concave curve (inflexion point is “very close” to the origin, e.g.U1) and a

(“mostly”) convex curve (inflexion point is “very far” from the origin, e.g.U4). Likewise, some S-

curves behave like smoothed out “step” functions (e.g.U2). And the “ramp” displayed by S-curves

such asU3, can express a near linear relation, over a range of interest. Thus, by assuming an S

shape for the function giving the “quality” of the image recovered from the truncated file in terms

of the number of decoded bits, this work allows not only the S-shape proper, but also the concave

and the convex shape, as well as steps and ramps. These shapes should accommodate most, if not

all situations of interest.

U
1
 

U
2
 

U
3
 

U
4
 

Figure 5.1: Some representative S-curves

Additionally, as discussed in fundamental psychology texts (see, for instance, [8, Chapter 7]),

the S-curve naturally arises in psychophysical experiments involving human perception. In these

experiments, a graph is made in which the horizontal axis denotes the “intensity” of a stimulus

applied to a subject. The vertical axis denotes the probability that the subject correctly identifies or

detects the presence of the stimulus. These graphs have often the shape of fig. 5.2.

The peak signal-to-noise ratio (PSNR) is the image quality metric most commonly found in the

literature. This is a simple to calculate index, which can be sensible and useful in many situations.

However, as an indicator of image quality as perceived by a human observer, the PSNR is at best

a very crude measure. Dansereau and Kinsner [4] argues this further, while proposing a metric

specifically aimed at progressive image transmission: the Renyi dimension spectrum. But this

measure is much too complicated for resource management studies.
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This analysis also depends critically on a function giving the probability of success of the trans-

mission of a data packet in terms of a signal to interference measure at the receiver. This “frame-

success” function (FSF) is determined by the physical layer of the system. It can be safely assumed

that for any physical layer, any such function has an S-shaped graph. Thus, two different S-curves

are at the core of this analysis.

The single-terminal case is fully analyzed, and the foundation is laid for a multi-terminal analy-

sis. The problem is set up as a joint optimization in which two key variables are jointly optimized:

transmission power, and the number of bits of each file to be decoded. A closed-form solution is

given.

The scientific literature contains various works involving power allocation and the transmission

of scalably encoded information. The most relevant may be [14], which considers files which

have been “layer coded” (a form of discrete scalable coding) and seeks a power allocation policy

across the various layers, minimizing the overall end-to-end distortion. However, previous works

seeking a joint power, and coding rate selection in order to maximize an image quality metric appear

unavailable.

5.2 Conceptual framework

5.2.1 Quality as a function of the number of decoded bits

At the center of this inquiry is a function yielding the quality of the decoded image as a function of

the number of bits in the fraction of the encoded file which is decoded. In chapter 1, an argument

grounded on rate-distortion theory led to a characterization of a quality-rate curve. Below, an “ax-

iomatic” approach is undertaken. Image quality is a subjective matter. Nevertheless, certain basic

assumptions can be made about the properties of a function giving quality as a function of received

bits. About this function, it is postulated that:

1) Its domain is the interval[0,M], whereM is the length in bits of the entire encoded file.

2) Its range is the interval[0,1]. This is just a normalization. A 1 denotes the best possible

quality of the decoded image (say the quality of the original).

3) It must be strictly increasing (more decoded bits yield a better image quality, by design)

4) Its graph is S-shaped, as in figure (5.2). In practical terms, sigmoidness further implies that:

(a) If the number of decoded bits is sufficiently large, the quality of the decoded image will be

sufficiently close to “perfect”. (b) After a sufficiently large number of bits have been decoded, the

marginal contribution to image quality of an additional bit becomes “very small” and is decreasing.

(c) If the number of decoded bits is sufficiently small, the quality of the decoded image will be

sufficiently close to zero. (d) Bits at the beginning of the encoded file contribute to the perceived

“quality” of the image at an increasing rate (“initial convexity”). One plausible interpretation is that

even a highly distorted image may provide enough information to identify its “meaning” (what is

it? a bird?, a person’s face?, etc.). This essential semantic information is provided by the bits at the

beginning of the encoded file (“base layer”) .
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Chapter 2 and references [30, 29] discuss the technical characterization of a generic S-shaped

function. A fixed function could work for different images, in particular if the images are sufficiently

“similar” (e.g., each corresponds to a passport picture of a respective adult).

5.2.2 A Generalized frame-success function

The frame-success function (FSF) yields the probability that a data packet is received successfully

as a function of the received signal to interference ratio. This function is determined by physical

attributes of the system, including the modulation technique, the forward error detection scheme,

the nature of the channel, and properties of the receiver. It is assumed that all that is known about

the FSF,fs, is that its graph exhibits a sigmoidal shape as in figure (5.2). More specifically, it is

assumed that the function defined byf (x) = fs(x)− fs(0) obeys the properties of the generalized

sigmoidal function introduced in [29] and discussed further in [30].

x

x
1
 x

2
 

b
v
 

b
1
 

b
2
 

x
f
 

L*: g*(x) 

L
1
: g

1
(x) 

L
2
: g

2
(x) 

0 

1 

←f(x) 

x
v
 x* 

Figure 5.2: An S-curve and some of its tangents

5.3 Single-user analysis

5.3.1 Problem statement

The problem faced by a single transmitter in a wireless ( in particular CDMA) network can be

formulated as follows.

It is taken as given a (1) certain amount of energy,E, available for transmission, (2) fixed

transmission rate ofR bits per second, (3) long sequence of files each of lengthM, each divided

into blocks of bits (packets/frames) of lengthL �M and each corresponding to equally important

similar images encoded scalably, (4) functiong as defined in section 5.2.1 giving the quality of an

image obtained by decoding a truncated encoded file as a function of the numbers of bits decoded,
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(5) certain level of interference (noise), (6) functionfs as described in section 5.2.2 giving the

probability that a data frame is received successfully as a function of the signal to interference ratio

at the receiver.

The transmitter wants to choose optimally (i) the number of successfully received bits at which

point a given file can be considered successful, so that the transmission of the next file is started

(that is, the “optimal” level of image quality at which point it is considered “good enough”), and (ii)

the transmission power. The objective is to maximize the weighted number of images transferred by

the time the available energy runs out, where the weight is the quality of each image. This criterion

can also be stated as maximizing the “total quality” transferred.

Because packets have been assumed much smaller than a file, the fact that the number of bits in

a frame and file is an integer is ignored. Because the images are similar enough (e.g. each image

corresponds to a (respective) human face), the same function works for all images.

5.3.2 Objective function

Suppose that at a certain instant of time,y < M bits of the current file have been received. Then,

g(y) ≤ 1 gives the quality of the image that would result if the file containing the received bits is

decoded.

Let Q = P ·h be the power at the receiver when a certain data packet is transmitted with power

P; and letI be the interference (noise) power. Then,fs(GQ/I) is the probability that said packet is

correctly received (G is a CDMA constant, the spreading/processing gain).

Assuming that, once a packet is received in error, re-transmission is ideal, then the total number

of times a given packet needs to be (re)-transmitted is a geometric random variable, whose probabil-

ity distribution is of the formπ(1−π)k−1, with π = fs(GQ/I). The expected value of this random

variable is 1/π, interpreted as the average number of times the same packet needs to be transmitted

to ensure correct reception.

The average amount of energy that needs to be spent in order to achieve the successful reception

of an image of qualityg(y) when transmission power is set toP can be obtained as follows. Each

packet requires an amount of energy equal to the product of 3 factors: the powerP, the length in

time of a packet (given the transmission rateR), and the average number of times the same packet

needs to be transmitted to ensure correct reception. EachL-bit packet lastsL/R secs. Therefore,

the average amount of energy required by a packet isP · (L/R) · (1/π). Sincey bits of data contain

y/L packets, the average amount of energy necessitated by the successful reception of an image of

qualityg(y) is given by
PL
πR

· y
L

=
Py
πR

(5.1)

To obtain the average number of images of qualityg(y) which can be successfully transmitted with

an energy budgetE, we divideE by the preceding expression (eq. (5.1)), and obtain:

πRE
Py

≡ RE
fs(GhP/I)

Py
(5.2)
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To obtain the total received “image quality”, the preceding expression needs to be multiplied by

g(y), the quality of each image. Therefore, the user wants to maximize

RE
fs(GhP/I)g(y)

Py
= RE

fs(GhP/I)
P

g(y)
y

(5.3)

For technical reasons discussed in [30],fs(x) is replaced withf (x) = fs(x)− fs(0). Then we

can re-write equation () as
REGh

I
f (GhP/I)
GhP/I

g(y)
y

∝
f (x)
x

g(y)
y

(5.4)

with x := GhP/I .

5.3.3 Optimization Model and Solution

In view of the preceding analysis, the objective of the single user can be summarized as

max
f (x)
x

g(y)
y

(5.5)

s.t. 0≤ y≤M (5.6)

0≤ x≤ x̄ (5.7)

wherex̄ := GhP̄/I with P̄ the largest available transmission power.

Notice that the ratios in the objective function (5.5) are mutually independent; i.e., one does

not influence or constrain the other. Therefore, the ratiosf (x)/x and g(y)/y can be maximized

independently, and the maximum of the product of the ratios can be obtained as the product of the

individual maxima. This problem can be easily solved by invoking the results provided by chapter 2

and references [30, 29]. These works discuss finding the maximum of the ratiof (x)/x s.t. 0≤ x≤ x̄

where all that is known aboutf is that its graph is S-shaped. The maximizer is the lesser of ¯x and

x∗. x∗is the abscissa of the unique point where the graph off is tangent to a ray emanating from the

origin (See figure (5.2) ).

From the preceding paragraph, the maximum off (x)/x s.t. 0≤ x≤ x̄ is obtained atx∗∗ =
min {x∗, x̄}. Likewise, the maximum ofg(y)/y s.t. 0≤ y≤ M is obtained aty∗∗ = min {y∗,M}.
The single-user problem is solved.

5.4 Discussion

The problem faced by an energy-limited terminal with a long list of scalably encoded similar images

to transfer over a wireless link has been solved. A tractable model, based on two “S-curves”, has

been discussed. A closed-form solution is given in terms of a point which can be easily identified

in the graph of the pertinent S-curve. The analysis leads to the maximization, over an appropriate

region, of the productR f(x)/P×g(y)/y, wherex is the received SIR,P is the transmission power,

R the data transmission rate,f is the “frame success” function,y is the chosen number of decoded
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bits, andg is the “quality” function. R f(x)/P has the unit bits/Joule, well known in the power

control literature (see chapter 4 and reference [30]), while quality/bit is the unit ofg(y)/y. Hence,

the maximized product is an intuitively appealing index in quality/Joule.

Although the problem is set up as a joint optimization of power and coding rate, the development

indicates that both variables can be “decoupled”. In retrospect, this seems reasonable. The files

are transmitted in small segments (data packets) which are assumed much smaller than the files,

constant, and independent ofy, the number of bits chosen for decoding. Power is needed to increase

the probability that a data packet is received successfully. But the physical layer treats each packet

in the same way, irrespective of the file to which it belongs, or its position within its file. Thus, the

point, y, at which a given file is truncated to start the transmission of the next file has no effect on

the probability of success of the intervening packets. Future research could consider the possibility

that packet length be a variable dependent ony (a shorter packet length for a smallery).

The S-curve practically contains as special cases a strictly convex and a strictly concave curve.

However, it is shown in chapters 2 and 3, that, iff (respectively,g) were strictly concave, the ratio

f (x)/x (respectively,g(y)/y) would be maximized at zero. In this case, the power level,∝ x, (re-

spectively, the “truncation point”,y) should be set as small as possible. Likewise, iff (respectively,

g) were strictly convex, then the power level, (respectively, the “truncation point”) should be set as

large as possible.

This analysis can be extended to include many terminals sharing a CDMA channel. In this

case, each terminal’s “noise” must include the interference caused by others. The problem can

be set up as a “game” in which each terminal seeks to maximize its quality/Joule index. In this

formulation, the key question is the existence and characterization of a “Nash equilibrium” (NE);

i.e., a feasible allocation (of power and file size here) to each terminal, such that no terminal would

be better off byunilaterally changing its allocation. Both of the ratios (f (x)/x andg(y)/y) making

up the quality/Joule index are quasi-concave [29]. It is well-known that a game in which “pay-

off” functions are quasi-concave, and each player’s “strategy space” (power and file size here) is

closed and bounded does have a NE. Game theory has been fruitfully applied to the transmission of

conventional data over a wireless channel in chapter 4, and in other works, such as [20, 33].
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Chapter 6

Coding Rate and Power Allocation for

Scalably Encoded Video Streaming

6.1 Introduction

Modern media encoders, such as those in the the JPEG 2000 (still images) and MPEG-4 (video)

compression standards, support scalability. Fine granular scalability produces an “embedded” bit

stream, which can be truncated at an arbitrary point, and decoded, leading to various levels of repro-

duced media quality. Video scalability can be achieved along various dimensions, including SNR,

spatial (size), temporal (frame rate), and frequency; and these scalability modes may be combined

[46, Ch.11].

In the present chapter, the model discussed in chapter 5 for still images is extended to consider

the transfer over a wireless link of scalably encoded video. This chapter partially overlaps the ma-

terial in chapter 1. Each T secs of video leads to a Y-bit embedded bit stream, which is independent

of the other segments. For example, T may correspond to one group of pictures (GOP), or several

GOPs, in video coded according to MPEG standards. An energy-limited terminal seeks to jointly

optimize both the truncation point of the embedded bit stream (coding rate), and its transmission

power.

We postulate thatall that is knownabout the function yielding the “utility” or “quality” of the

resulting video segment in terms of the number of bits in the truncated file (coding rate) is that its

graph is an S-curve. As shown in fig. 5.1, this family of curves contains as special cases (“mostly”)

concave curves (e.g,U1), (“mostly”) convex curves (e.g.,U4), and smoothed out “step” functions

(e.g.U2). And the “ramp” displayed by S-curves such asU3, can express a near linear relation, over

a range of interest. These shapes should accommodate most, if not all situations of interest. Other

reasons for adopting this family are given in chapters 1 and 5.

Another critical function is that giving the probability of success of the transmission of a data

packet in terms of a signal to interference measure at the receiver. It can be safely assumed that for

any physical layer, any such function has an S-shaped graph. Thus, two different S-curves are at the
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core of this analysis.

The scientific literature registers at least one previous use of the idea of maximizing end-user

utility in video streaming in [18], later extended to [19]. But that work focuses on a wired net-

work with renegotiable CBR services, does not consider scalability, and only considers a loga-

rithmic utility function. There are also various works involving power allocation and the wireless

transmission of video. Typically, power is minimized, and possibly other parameters are adjusted,

while holding “end-to-end” distortion to an acceptable level. For instance, [47] specifically targets

scalably-encoded video, while seeking an optimal power allocation, with joint source-channel cod-

ing. However, previous works seeking a joint power, and coding rate selection in order to maximize

a video quality metric within an analytical model appear unavailable.

Below, we describe the system model, and discuss more formally the key functions. Then, after

formally stating the problem, we build and analytically solve an optimization model, and provide a

numerical example. We conclude by discussing our results, and commenting on possible extensions.

6.2 Conceptual framework

6.2.1 System model

Fig. 6.1 shows schematically the system engaged in the wireless transmission of scalably encoded

live video. Each T secs of video is encoded as a fully embedded bit stream of lengthY, which

may be truncated to lengthy. For y≤ Y, the reproduced video is imperfect. Its quality or utility

is u(y), with u an increasing function discussed below. The bit stream is broken up into packets.

Each packet may have added error-control bits (error-control systemnot shown). These packets

enter a large buffer prior to transmission. Packets are wirelessly transmitted at the rate ofR bps.

To ensure continuous video play out at the receiver, the actual transmission time alloted to the

y bits corresponding to a given T-sec segment is∆ ≤ T secs. (i.e., the coding rate cannot exceed

R∆/T). A ∆ < T may account for processing and propagation time not being modeled, and a certain

“guard time”. The probability that a packet is successfully received isfs(x), with x the signal-to-

interference ratio (SIR) at the receiver, which is determined by the chosen transmission power, any

path loss, and the interference (noise) present at the receiver. The functionfs is discussed further

below. Packets received in error which cannot be corrected result in ideal re-transmissions until

correctly received and confirmed. Correctly received packets are placed in a large buffer. Other

symbols shown in fig. 6.1 are discussed as introduced below.

6.2.2 Quality as a function of the coding rate

At the core of this inquiry is a function yielding the quality or utility of the decoded video as a func-

tion of the number of bits in the truncated encoded file. This function cannot be derived; it is fully

determined by the end-user, in the same way in which the “utility function” at the core of economic

studies resides within the consumer.u(y) could be obtained by psychophysical experimentation.
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Figure 6.1: Schematic diagram of the wireless streaming of scalably encoded video.

We postulate that this function is such that its graph is an S-curve. Some of the implications of this

assumption are discussed further in section 5.2.1. A fixed function could work for different video

segments, in particular if the segments are sufficiently “similar” (e.g., each corresponds to differ-

ent parts of the same sporting event). Further justification is found in chapters 1 and 5. Chapter 2

discusses the technical characterization of a generic S-curve.

6.2.3 A Generalized frame-success function

The frame-success function (FSF) yields the probability that a data packet is received successfully as

a function of the signal to interference ratio at the receiver. This function is determined by physical

attributes of the system, including the modulation technique, the forward error detection scheme,

the nature of the channel, and properties of the receiver. We assume thatall that is knownabout the

FSF, fs, is that its graph exhibits a sigmoidal shape as in figure (6.2). For good technical reasons

similar to those discussed in chapter 3,f (x) := fs(x)− fs(0) replacesfs in the analysis below (fs(0)
is generally very small, but not zero).

6.3 Analysis

For our purposes, it is convenient to regard the wireless channel as if it was a deterministic channel

producing the throughput that the actual channel produces on the average. Thus, we assume that,

when the SIR at the receiver isx, (L/M)R f(x) information bits are received each second at the

decoder buffer. The intuition is as follows. With a perfect channel, each packet would be filled with

information bits (no ECC), and would be received successfully at first try. Thus,R information bits

would be received each sec. However, with an imperfect channel,M−L ECC bits are introduced in

each packet, and still, on the average, onlyn f(x) out of everyn packets are received successfully.

Thus, an average of(L/M)R f(x) information bits are successfully transferred each second.
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6.3.1 Problem statement

It is taken as given a (1) certain amount of energy,Ē, available for transmission, (2) fixed transmis-

sion rate ofR bits per second, (3) long sequence of files, each of lengthy≤ Y, each divided into

packets of lengthL� y and each corresponding to a video segment of length T secs which has been

encoded scalably (L−M error-control bits are added to each packet), (4) maximal time∆≤ T secs.

to complete the transmission of they bits corresponding to a given T-sec segment (i.e., the coding

rate cannot exceedR∆/T) (5) utility/quality functionu as defined in section 6.2.2, (6) certain level

of interference (noise),I , (7) frame-success functionfs as described in section 6.2.3.

The transmitter wants to choose optimally (i) the truncation point (coding rate) and (ii) the

transmission power, in order to maximize the sum of the quality or utility of each one of the video

segments that can be viewed at the receiver before energy runs out.

6.3.2 Objective Function

For a given level of desired quality, ¯u, there is a corresponding number of information bits,y, that

produces this quality (u(y) = ū). Thus, the total number of information bits received successfully

after∆ secs. must be not less than thisy. And spending energy to exceed this level would be unwise,

because it would decrease the total number of segments of quality ¯u that are delivered before energy

runs out. Thus, for giveny and∆, the terminal must choose its transmission power so that

L
M

R f(x)∆ = y (6.1)

There is one specific SIR value,x(y), that satisfies eq. (6.1), and a specific transmitted power,P(y),
that yields the SIRx(y) at the receiver. Thus, for a given∆, y determines the transmission power.

The total amount of energy spent on the transmission of a video segment of qualityu(y) is

P(y)∆. Thus, the total number of T-sec video segments of qualityu(y) that can be transferred with

an energy budget of̄E is Ē/(P(y)∆). Then, the total quality viewed, which the terminal wishes to

maximize, is
Ē
∆

u(y)
P(y)

(6.2)

For a fixed level of energy,̄E, the terminal only needs to maximizeu(y)/(∆P(y)) (quality per Joule),

and if ∆ is also fixed, just maximizeu(y)/P(y), the quality-to-power ratio (QPR).

6.3.3 Optimization Model and Solution

In view of the preceding analysis, the objective of the single user can be expressed as maximizing

u(y)/P(y). Assuming a CDMA technology, with a spreading gain ofG := Rc/R (chip rate over bit

rate), channel gain ofh, and interfering powerI , the received SIR and the transmitted power are
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related asx = GPh/I . Thus, the terminal objective is equivalent to :

max
x,y

u(y)
x

max
x

u(B f(x))
x

s.t. y = B f(x) OR s.t. 0≤ x≤ x̄

0≤ x≤ x̄

whereB := (L/M)R∆ andx̄ := GhP̄/I with P̄ the largest available transmission power.

With u(B f(x)) := s(x), the terminal should maximize the ratios(x)/x. It can be shown that, as

shown in fig. 6.2, the composite functionu(B f(x)) retains the S-shape of bothu and f . As discussed

in [30, 29], foranyS-curveS, S(x)/x is always maximized atx∗, the abscissa of the tangency point

between the S-curve and a straight line that passes through the origin.

6.3.4 Numerical example

Fig. 6.2 summarizes a numerical example. We assume that it has been experimentally determined

that, for this end-user, the utility or quality functionu(y) = [1+exp((60− y)/10)]−1(plotted at the

top of fig. 6.2). Withx denoting SIR at the receiver, the frame-success function is assumed to be

fs(x) = [1− 1
2 exp(x/2)]80(whose graph is second from the top), which corresponds to non-coherent

FSK modulation, no FEC and 80-bit packet size. Suppose that T secs of video can be scalably

encoded, at full rate, toY = 100 (in some multiple of bits). The parametersR, L, M, and∆ are such

thatB = (L/M)R∆ = 110 (in the same unit asY ). The third subplot corresponds to the composite

function u(B f(x)) := s(x), which clearly retains the S-shape of bothu and f . The terminal must

choose its transmission power so that the ratios(x)/x (plotted at the bottom) is maximized. The

maximizer isx∗ ≈ 10.5, and its matching truncation point isy∗ ≈ 110∗ f (10.5) = 88. Thus, for this

user, under this physical layer, the scalable file should be truncated to about 88% its size, leading to

a per-segment video quality of about 94% that of the original.

6.4 Discussion

We have investigated the problem faced by an energy-limited terminal transferring over a wireless

link a long sequence of files, each corresponding to a segment of video which has been scalably

encoded, as supported by the MPEG-4 standard. We have discussed a tractable analytical model,

based on two key functions:u(y) which gives the perceptual quality or utility of a video segment

as function of the coding rate, andf (x), the packet success probability as function of the signal-to-

interference ratio (SIR) at the receiver. By assuming thatall that is knownabout these 2 functions

is that they are S-curves, we are de facto allowing the possibility that (“mostly”) concave, convex,

“step”, and linear functions play those roles (fig. 5.1). We have postulated that the terminal wishes

to maximize the “cumulative utility” (or quality) from all the segments that reach the receiver before

energy runs out. Our analysis has led us to maximize the quality-to-power ratio, which is equivalent

to maximizing quality per Joule. Although we have set up the problem as a joint optimization of
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Figure 6.2:
From the top, (i) the S-curveu(y) giving the perceptual quality of a video segment, as a function of
the coding rate, (ii)f (x), the probability of successful reception of a packet as a function of the
SIR, (iii) the composite functionu(B f(x)) := s(x), (iv) the ratios(x)/x which the terminal should
maximize. ForanyS-curveS, S(x)/x is always maximized atx∗, found at the tangency point
between the S-curve and a straight line from the origin.
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power and coding rate, our analysis indicates that, when the transmission time is constrained by the

underlying streaming application, any one of these variables fully determines the other. The terminal

should choose its transmission power so that the received SIRx maximizes the ratiou(B f(x))/x,

which occurs at the tangency point between a straight line from the origin, and the graph of the

composite functionu(B f(x)) (also an S-curve). If the terminal lacks sufficient power to reach that

SIR, it should operate at maximal power, unless the resulting video quality is unacceptably low.

Direct implications of our analysis include: (i) ifu(y)≈ ky so that the quality-coding-rate rela-

tion is nearly linear, the optimal SIR is determined by the physical layer, as the maximizer off (x)/x

(which is the sameSIR that a data-transmitting terminal would choose, as discussed in chapter 3);

(ii) if u behaves like a step function, the terminal should truncate just past the point where the step

occurs; and (iii) if f behaves like a step function, then the optimal SIR is just past the point where

f jumps.

Even with a fixed physical layer (f function), the optimal operating point could change due to

a variation in the perception of quality (u function) at the receiver, or movement that may force the

transmitter to operate at an SIR below the optimal level due to power limitations. If the streamed

video has been encoded prior to transmission, scalability is essential to achieve such adaptation, via

a change in the truncation point of the embedded bit stream. But if coding is being performed con-

current with transmission, a non-scalable encoder that can adapt its rate in real-time could provide

a more efficient solution, at a possibly higher computational cost. We can also apply our analysis to

optimally choose the coding rate of the non-scalable encoder.

A situation in which several video transmitters share a CDMA channel can be set up as a “game”

in which each terminal seeks to maximize its quality-to-power index, with each terminal’s “noise”

including the interference caused by others. Game theory has been fruitfully applied to the wireless

transmission of data, in chapter 4 and in other works, such as [20, 33].
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Chapter 7

Quality-Distortion Theory: Distortion

Management when Fidelity is Expensive

7.1 Introduction

Distortion measures the difference between a signal and its copy. It is an important QoS measure

in the processing and transmission of error-tolerant information, such as media signals intended for

human consumption. Typically, when dealing with distortion, the resource-management literature

assumes that up to a level, distortion is of no consequence, but beyond that level, it makes the signal

totally useless. Such “hard threshold” seems at odds with the way humans process media signals.

These signals can be useful at various degrees of noticeable distortion. And when a reduction of

distortion is costly, the consumer can prefer more distortion, in exchange for energy, money, or other

savings. Furthermore, scientific work has shown that judiciously relaxing the distortion constraint

by a small amount can lead, under certain conditions, to a disproportionately larger increase in the

capacity of a CDMA network[15].

Hence, a tractable model is needed for the way humans perceive the quality of “imperfect” sig-

nals. Below, a model that establishes a quality-distortion relation is (re)introduced. The model is

sufficiently flexible to capture a wide variety of plausible quality-distortion relationships, and in-

cludes as special cases some of the simpler cases, such as the step function often assumed by the

literature. It is postulated that the perceptual quality of an imperfect copy of a signal is determined

by a sensible decreasing function of its distortion. No specific algebraic functional form (“equa-

tion”) is imposed. Rather, a general family of Q-D functions is assumed. Any such function has the

general shape shown in fig. 7.2. This shape can accommodate a wide variety of quality-distortion re-

lations (“step”, “ramp”, convex, concave, etc). Further discussion on this matter is found in chapter

1.

As remarked above, the literature generally assumes that distortion has no noticeable effect up

to a certain level, and completely spoils the signal after that level. Reference [18] takes a somewhat

more general approach by postulating that the end-user wishes to maximize the “utility” of an im-
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perfect media signal. But this reference focuses on video over a wired network, and only considers

the special case of a logarithmic utility function.

The quality-distortion curve (first introduced in chapter 1) can also be interpreted as a “utility

function” giving the “usefulness” to an observer of an “imperfect” signal. A key difference between

perceptual quality and “utility” is that utility is application-dependent. For instance, for a given

observer, a level of distortion deemed unacceptable for a “serious” application, may be perfectly

acceptable (to the same observer) in a less demanding situation. Because the family of Q-D curves

(“utility functions”) assumed in the present chapter includes as special cases both the logarithmic

and the step function, the present approach is a strict generalization of the literature.

Under this approach, the “right amount” of distortion is a variable to be chosen optimally,

whether directly, or, by choosing other resources, indirectly. Below, a situation in which distor-

tion is directly chosen is considered first. A consumer is offered media files at various degrees of

distortion. Both his “utility” and the cost of acquiring a file are decreasing in the amount of distor-

tion in the file. With a limited budget, which could be in money, energy, time or any other valuable

resource, the consumer faces a classical quantity vs. quality trade-off. He can obtain relatively few

high-quality media files, or relatively many low-quality ones. What is the optimal choice? It turns

out that with linear pricing the optimal amount of distortion can be quite clearly described. It is

obtained by drawing a tangent line from the point(0, D̄) to the graph of the utility function (̄D is the

largest available distortion level). With non-linear pricing, a similar but somewhat more involved

procedure can be applied.

A more specific communication scenario is also considered. An energy-limited transmitter with

many media files (images) to transfer over a wireless link wants to choose optimally its transmission

power. At low transmission power, many bit errors occur, which produce a highly distorted image

at the receiver. High transmission power produces less distortion, at the expense of higher energy

consumption per file. Again, a quality vs. quantity trade-off arises. The transmitter opts to maximize

the totalweightednumber of files transferred before energy runs out. The weight of each file is its

expected “utility” (perceptual quality), which is a function of its distortion. This distortion is a

random variable determined by the number of bit errors during the transmission of the file, which

is itself determined by the signal-to-interference ratio (SIR),γ, at the receiver. With̄U(γ) denoting

the expected utility of a media file, the analysis leads to choosing an SIRγ∗ to maximize an index in

utility/Joule, which is proportional tōU(γ)/γ. For bit-error functions of practical interest,̄U(γ) has

the familiar S-shape, andγ∗ can be obtained by drawing a tangent line from the origin to the graph

of Ū(γ) (seex∗ in fig. 5.2).

Below, the general properties of the proposed family of Q-D curves are formally given and

discussed. Then, the situation in which the degree of distortion of media files can be directly chosen

optimally given a cost function is analyzed. Subsequently, the more specific telecommunication

problem is solved. Finally, some general summarizing comments are given. (Below, the phrase

“perceptual quality” and the word “utility” are used exchangeably. Strictly speaking, a difference

could be established between the two, as discussed above)
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7.2 Quality/distortion Theory

Distortion is typically defined as a relatively simple mean square measure of the difference between

a signal and its copy. As an indicator of media quality as perceived by a human observer, this

index is, at best, a very crude measure. Theperceptualquality of an “imperfect” copy of a signal is

determined by the human sensory system (visual, auditory, etc). It seems reasonable to assume that

the perceptual quality is somehow determined by distortion; i.e., that a functionQ(D) that translates

distortion into perceptual quality can be found. The quality-distortion function cannot be derived,

and should not be imposed. It should be obtained by psychophysical experimentation. However, one

can make some reasonable assumptions about the properties that any such function should possess.

Then one can analyze a problem of interest and (optimistically) describe its solution by employing

the general properties of the curve.

7.2.1 Intuitive specification

Figure 7.1 illustrates some plausible, simpleQ(D) curves. First is, of course, the supposition that

perceptual quality falls linearly as distortion increases from zero to its highest value (“quality equals

fidelity”). This assumption would greatly simplify the analysis. But it essentially means that the

human visual system (HVS) (or auditory, etc) is perfectly “tuned” to a very simple mean squared

measure, ..., in all cases, ..., for all people. Such a strong assumption would be adventurous, and

likely to be refuted by experimentation. Another highly simplifying assumption often employed in

the literature is that distortion is unnoticeable up to a level (c in fig. 7.1) but it totally spoils the

signal beyond that point (Q(D) is a “step function”). But our own experience tells us that media

signals can be useful at various degrees of noticeable distortion. Furthermore, when a reduction of

distortion is costly, a human may choose to tolerate more distortion, in exchange for energy, money

or other savings. But the step function assumption precludes the study of such trade-offs. A third

possibility illustrated in fig. 7.1 is the “ramp”Q(D), implying that distortion has no noticeable effect

up to a level (a), and completely spoils the signal beyond another level (b), while varying linearly

between these two points. Presumably,a andb would be determined by the specific user/application

combination. The ramp includes as special case the threshold (a = b = c) and the linear relation

(a= 0 , b= DMAX ); but still its “piecewise linearity” is a big imposition which may not be supported

by experimentation.

Further reflection indicates that it is reasonable to assume that the graph of theQ(D) function

is a “reversed” S-curve, as shown by fig. 7.2. This graph strictly generalizes the step function

often assumed in the literature. And the family of S-curves includes as special cases curves that

are “mostly” convex, others that are “mostly” concave, and some whose “ramps” follow closely a

straight line over a given interval. Thus, if the analyst assumes thatall that is knownabout theQ(D)
curve is that it is a reverse S-curve, and conducts the analysis on the basis of properties derived from

this shape, the solution procedure and conclusions will be valid for a wide variety of plausibleQ(D)
relations.
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Figure 7.1:
Quality vs. distortion: Some plausible simple relations are: (i)fidelity equals quality(red dashed
line); (ii) hard threshold (step); (iii)ramp(blue broken line). The ramp includes as special case the
threshold (a = b = c) and the linear relation (a = 0 , b = DMAX ). But the reverse S-curve includes
all these cases and more (see next figure).
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7.2.2 Formal definition

The Q-D curve (“utility function”) has the following properties:

1) Its domain is the interval[0, D̄], whereD̄ is the largest available level of distortion.

2) Its range is the interval[0,1]. This is just a normalization. A 1 denotes the best possible

quality of the decoded file (say the quality of the original) and a zero is the ’quality’ of a maximally

distorted file .

3) It is strictly decreasing (distortion worsens quality)

4) Its graph is “reversed” S-shaped, as in fig. 7.2. In practical terms, reversed-sigmoidness fur-

ther implies that: (a) If the distortion is sufficiently small, the quality of the decoded file will be

sufficiently close to “perfect”. (b) After distortion has been sufficiently reduced, the marginal con-

tribution to media quality of further reductions of distortion becomes “very small” and is decreasing.

(c) If the distortion is sufficiently large, the quality of the decoded image will be sufficiently close to

zero. (d) The function becomes convex as distortion increases (“eventual convexity”). One plausi-

ble interpretation is that even a highly distorted image may provide enough information to identify

its “meaning” (what is it? a bird?, a person’s face?, etc.). This essential semantic information is

provided at high levels of distortion. Thus, the utility of the distorted imageincreases at a fast rate

as distortion isreduced from its highest level(right to left in the graph).
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Figure 7.2:
In the eyes of the beholder: Media signals can be useful to end users at various degrees of noticeable
distortion. This is captured by a “utility function” indicating the “usefulness” of the distorted signal.
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7.2.3 An alternate view: fidelity vs. distortion

Rather than basing the argument on the distortion,y, of the recovered signal, one can focus on

the variablex = D̄− y, interpreted as the “fidelity”, or the amount of distortion which has been

“avoided” or “removed”. Whenx = 0 the resulting signal is “fully” distorted (y = D̄). We can think

of this as a signal obtained by guessing all the bits in the concerned file, which yields the “cheapest”

possible image. To get an image with any less distortion necessitates some kind of expenditure. The

largerx (the difference between̄D andy), the higher the quality of the image, and the greater its

cost. Thus, this analysis can be based on the derived functions(x) := u(D̄−y). The graph ofu(−y)
is the “mirror image” of that ofu (“time reversal”). And the graphu(D̄− y) is the same as that of

u(−y) but shifted to the right̄D units. Thus, the graphs(x) yields a “standard” S-curve, as displayed

in fig. 5.2. This observation will prove useful in the technical development.

7.3 Acquiring Variably Distorted Information

Pedagogically, it may be useful to set up the problem of interest in a general scenario, before intro-

ducing communication issues.

7.3.1 Problem statement

A consumer can acquire files corresponding to perceivable media (say images), each available at

varied degrees of distortion,y∈ [0, D̄]. The cost of any one image (in terms of money, energy, or

any other scarce resource that the consumer has and values) isc(y), which is always positive and

decreasing in the level of distortion,y. For convenience, letc(D̄) = 0 andc(0) = c0. Images are

equally valuable to the consumer, in the sense that he is indifferent between any one of two images,

if they both have the same level of distortion. The usefulness, quality, or “utility” to the consumer of

a distorted image is determined as a function of its distortion,y, by a functionu(y), whose properties

are discussed in section 7.2.2.

The consumer wants to spend his budgetB optimally. That is, he wants to determine, givenu, c

andB, what is the “right” amount of distortion he should choose. If he chooses to acquire images

with very small distortion (y≈ 0), the cost of each image,c(y), will be “high”, and the number of

images he will get to view,B÷c(y), will be small. On the other hand, choosing a largey will result

in a large number of highly distorted images.

Notice that, as discussed in section 7.2.3, the problem can be stated in terms ofx= D̄−y, which

is interpreted as the amount of distortion which has been “avoided” or “removed from” the image,

or simply its “fidelity”. In this case, the pertinent cost function is denoted ascx(x).

7.3.2 Objective Function and Constraints

Some reflection indicates that the consumer should maximize his total utility, which is obtained as

the product of the quality (or utility) of each image by the total number of images he gets acquire.
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Hence, the consumer should solve

max
0≤y≤D̄

u(y)
c(y)

(7.1)

or max
0≤x≤D̄

s(x)
cx(x)

(7.2)

(multiplying by the constantB would make no difference to the solution).

Now, the index being maximized,u(y)/c(y) or s(x)/cx(x), has the unit quality/dollar, quality

per Joule, or quality per second, depending upon the customer’s scarce resource.

7.3.3 First-order optimizing conditions

The first-order necessary conditions (FONOC) for an interior solution to this problem is

c(y)u′(y) = c′(y)u(y) (7.3)

or cx(x)s′(x) = c′x(x)s(x) (7.4)

Inspection of this equation immediately indicates that ifc(y) ∝ u(y) then any value ofy (or x) would

satisfy it.

7.3.4 Solutions

7.3.4.1 Linear cost function

If c is such thatc(y) = (D̄−y)c̄, (cx(x) = c̄x ) then the objective function (eq. (7.3)) can be written,

as

max
0≤x≤D̄

u(D−x)
x

=
s(x)

x
(7.5)

As discussed in section 7.2.3, the graph ofs(x) has the form shown in fig. 5.2; that is,s(x) is a

standard “S-curve”. The solution to maximizings(x)/x, with s an S-curve, is well understood. It is

the unique positive number obtained as the abscissa of the point at which a tangent line emanating

from the origin meets the graph ofs. (seex∗ in fig. 5.2). The optimal distortion level isy∗ = D̄−x∗.

Equivalently, the desired solution can be obtained by drawing a tangent from the point(D̄,0) to the

graph of the originalu(y).

7.3.4.2 General cost functions

The preceding development can be extended, with due attention to certain technical details, to a

more general cost function. The key step is to make the non-linear coordinate transformation. For

instance, suppose thatc(y) = (D−y)2. Let t := (D−y)2, so thaty= D−
√

t. The objective function

can then be written as:

max
0≤t≤D2

u(D−
√

t)
t

:=
st(t)

t
(7.6)



65

It can be argued that the graph ofst(t) is still a “stretched” S-curve. Hence, the value that maximizes

st(t)/t can be obtained, under appropriate technical assumptions, as before, by drawing a tangent

line from the origin to the graph ofst(t).

7.4 Distortion and power management

Below, the analysis focuses on the more specific scenario of transmission of error-tolerant files (“me-

dia”) over a wireless link. For simplicity, each information bit in a file is viewed as corresponding

to a pixel of anuncodedblack and white image.

7.4.1 Problem statement

It is taken as given: (1) a certain amount of energy,E, available for transmission; (2) a fixed trans-

mission rate ofR bits per second; (3) a long sequence of files, each corresponding to an equally

important image, and each divided intoN blocks of bits (packets) with a total ofM bits, of which

L are information bits; (4) a certain level of interference (noise),I . The transmission proceeds one

packet at a time,withoutretransmissions. An error-control system isassumedto operate as follows.

Up to m bit errors per packet can be corrected; and ifm+ 1≤ k ≤ L bit errors occur in a given

packet, each will ultimately contribute one error in the decoded file. These errors creates distortion.

Thus, there is also a functionu as defined in section 7.2 giving the utility (quality) of a received file

as a function of its distortion.

The signal-to-interference ratio (SIR) at the receiver determines the bit error probability. Thus,

a larger transmission power leads to fewer errors, statistically lower values of distortion, and greater

expectedutility. But, with limited energy, more transmission power means fewer total images trans-

ferred. The transmitter wishes to utilize its energy efficiently.

7.4.2 Distortion analysis

The error-control system is viewed as a “black box” whose net effect is that a packet withm+1≤
k≤ L bit errors contributek errors to the decoded file. Distortion is, generally, defined as of sum of

squares of differences between the reconstructed signal and the original. This sum equals the total

number of bit errors in the reconstructed image, in this scenario.

For example, suppose that the number of packets per file is 2, and that the code being used can

correct up to 3 bit errors per packet. Suppose that 2 and 5 bit errors occur during the transmission of

the first and second packet, respectively. Then, the first packet is corrected, so that all its information

bits coincide with the original. But the 5 errors in the second and final packet are not corrected, and

contribute 5 errors in the decoded file. Thus, the total distortion of this image will be 5. The utility

function of the user will determine how good or bad a distortion of 5 is.

It is worth noting that it is not obvious, at least in this problem, what is the worst case scenario

for distortion. In principle, it would seem that having each and every bit in error should be the worst
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that can happen. However, given the idiosyncrasies of the human visual system, if a black and white

image were to have each and every bit reversed, the result would be a perfectly intelligible image,

in which black and white simply switch roles! However, this fact is not considered in the analysis

below.

7.4.3 Expected utility of distorted image

In this scenario, distortion is a discrete random variable. The transmission power determines the

bit-error rate (BER), and frame-error rate (FER), which indirectly determines the probability distri-

bution of distortion. When the number of packets per file ,N, is large, expressing this probability

distribution in terms of the BER is quite cumbersome and tedious. This task is, however, relatively

straightforward when each image fits into a single packet. Let this be the case. Under the assump-

tions that have been made about the error-control system, distortion is zero, ifm or less bit errors

have occurred during the transmission of the packet. When the number of bit errors exceed the

number that can be corrected by the code, what happens depends on more specific details of the

error control system. Let us assume, pessimistically, that ifm+1 to L errors occur, each will cause

an error among information bits in the decoded file.

Assuming independent bit errors, the probability ofk bit errors in anL bit packet is given by(M
k

)
εk(1−ε)M−k, with ε the bit-error rate (BER) which is determined byγ, the signal-to-interference

ratio (SIR) at the receiver.

For the single-packet file, theexpected utilityof a fileUE(γ) is

u(0)

(
m

∑
k=0

(
M
k

)
εk(1− ε)M−k

)
︸ ︷︷ ︸

Prob of 0 to m bit errors

+

L

∑
k=m+1

(
M
k

)
εk(1− ε)M−ku(k) (7.7)

7.4.4 Solution

The expected utility functionUE(γ) is a representative measure of the expected quality of each im-

age, given a transmission power level,P, which determines the received SIR,γ. Notice, however,

that the BER is 1/2 whenγ = 0, which means thatUE(0) > 0. To avoid technical problems involv-

ing “transmissions” with 0 power,̄U(γ):=Ū(γ)-Ū(0), the “earned” expected utility of an image, is

chosen as the representative quality figure of merit (see chapter 3 for a relevant discussion involving

error-intolerant data transmissions).

Since each bit lasts 1/R secs., (R is the transmission bit rate), the total energy consumed by the

transmission of the single-packet image isPM/R. Thus,ER÷MP images can be transferred with

E Joules. The transmitter wishes to maximize its total (earned) expected utility, and must solve:

max
0≤P≤P̄

R
M

Ū(γ)
P

≡ max
0≤γ≤γ̄

Rc

M
h
I

Ū(γ)
γ
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with h the path loss,I the interference,Rc the “chip rate” (a CDMA constant closely related to the

bandwidth),P̄ the highest available transmission power, andγ̄ = (Rc/R)hP̄/I , the highest achievable

SIR.

It can be argued that for BER functions of practical interest, the graph ofŪ(γ) has the S-shape

displayed in fig. 5.2. Then, by the argument given in section 7.3.4.1, the valueγ∗ which maximizes

Ū(γ)/γ can be obtained by drawing a tangent from the origin to the graph ofŪ(γ). This value

determines the transmission power, and solves the single user problem. In any case, it is discussed

in chapter 3 that ifŪ(γ) was convex, the optimal would occur at the highest available power level,

and that ifŪ(γ) was concave it would be optimal to “operate” at zero power.

The preceding development also applies when each media file is divided into many packets.

Extending the preceding analysis to consider a multi-packet image file is conceptually simple, but

very tedious. The procedure to find the probability distribution of distortion is more cumbersome.

But once done, it is straightforward to find the “earned” expected utility of a file as a function of the

received SIR,Ū(γ). The shape of the graph of this function should not be affected by the number of

packets per file.

7.5 Discussion

Media signals can be useful at various degrees of distortion. A proposed model captures this fact

mathematically, and enables its exploitation, when avoiding/reducing distortion requires the expen-

diture of limited resources. Two interesting problems involving a quality versus quantity trade-off

are formulated and solved. In one case, media files are offered at various degrees of distortion, at a

price that isdecreasingin distortion. A consumer willing to accept a higher degree of distortion, can

acquire more files. A more specific version of this problem involves an energy-limited transmitter

wishing to transfer many images over a wireless link. Spending more energy per packet reduces bit

errors, and hence distortion, but also leads to fewer images transferred.

At the core is a function relating the perceptual quality (“utility”) of an “imperfect” media signal

to its distortion; i.e., a quality-distortion (Q-D) curve. In the development, no specific “equation”

(logarithmic, logistic, etc) is imposed as a Q-D function. Rather, it is assumed thatall that is

knownabout this curve is that it belongs to certain family characterized by a “reversed” S-shaped

graph. The analysis follows from the general properties of this family; so that it applies toany

Q-D curve, as long as its graph has the assumed shape. This shape contains as special case the

“sharp threshold” (step) often assumed in the literature, as well as many plausible Q-D relations

(convex, concave, “ramps”, etc). This level of generality is important, because the “true” Q-D

curve can only be obtained by psychophysical experimentation with human subjects. The actual

curve will, generally, depend on the specific targeted human user, and quite possibly on the specific

application. Because of its generality, this analysis and its conclusions are robust, and should hold

for many user/application combinations.
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Chapter 8

Data Rate and Power Allocation for

Throughput Maximization

8.1 Introduction

Modern wireless networks will accommodate simultaneous transceivers operating at very different

bit rates. Some of the transceivers may be transferring data, while others transfer media content,

such as voice, images, or video. Several technologies have been proposed to accommodate multi-

rate traffic in such networks. Reference [26] discuss several multi-rate schemes based on Direct

Sequence Code-Division Multiple Access (DS-CDMA). One such scheme is variable spreading

gain (VSG) CDMA, as described, for example, in [11]. In a VSG-CDMA system, each terminal’s

spreading gain is determined as the ratio of the common chip rate to the terminal’s bit rate.

The model discussed in this chapter is relevant to an interference-limited single-cell VSG-

CDMA system in which each data terminal can operate within a range of bit rates, which is assumed

continuous for tractability. An allocation specifying, for each active terminal, a choice of data rate

and power level is sought that will maximize the network weighted throughput. The weights admit

various interpretations, including levels of importance or priority, “utilities”, or monetary prices

(contribution to the network’s revenues). The traffic is assumed to be delay-tolerant (“best-effort”).

Similar situations have been considered by the literature. This formulation has much in com-

mon with that of [40]. Major differences between this reference and the present work include (a)

the weights (b) the “generalized” frame-success function adopted herein, and (c) the simplifying

linearization involved in the solution procedure given in the reference. Reference [16] seeks data

rates and power allocation, and consider a “sigmoidal-like” frame-success function, but focuses on

the downlink, does not consider weights, and provides a sub-optimal algorithmic solution based on

pricing. The present work has also many similarities with [37], which maximizes a fairly general

“capacity function”. But [37] does not consider weights, and assumes that the terminal’s data rates

are fixed exogenous parameters, as opposed to variables to be chosen optimally.

At the core of this analysis is the frame-success function (FSF), which gives the probability
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that a data packet is received successfully as a function of the terminal’s signal-to-interference ratio

(SIR) at the receiver. This function is determined by physical attributes of the system, including the

modulation technique, the forward error detection scheme, the nature of the channel, and properties

of the receiver, including its demodulator, decoder, and antenna diversity, if any. No particular

algebraic functional form (“equation”) is imposed as FSF. Rather, it is assumed that all that is

known about this function is that its graph is a smooth S-shaped curve, as displayed in fig. (8.1)

(see chapter 3 for further discussion of this approach). The development exploits properties derived

from this shape. Hence, the present analysis should apply to many physical layer configurations of

practical interest, as long as they give rise to an FSF that has an S-shaped graph, and satisfies certain

mild technical assumptions.

Below, a relatively simple optimization model relevant to uplink data transmission in one VSG-

CDMA cell is built. Afterward, an outline of the general solution procedure is provided. Then, the

two-terminal special case is completely solved analytically, including the verification of the second-

order optimality conditions. This case is thoroughly discussed, as it provides insights useful for

the general analysis. Subsequently, the analysis focuses on a specific N-terminal scenario. The

scenario studied is one in which a few equally “important” terminals share a cell with many “ordi-

nary” terminals. It is presumed that the system can accommodate all the important terminals at the

highest available data rate. But it is not clear how many, if any, of the ordinary terminals should

be set to operate at this high rate, in order to maximize the cell’s weighted throughput. A general

solution procedure for this scenario is given. Finally, the results given in this chapter are discussed,

emphasizing the technical limitations of this analysis.

8.2 General Formulation

8.2.1 Problem Statement

We seek to solve:

max
Gi ,αi

N

∑
i=1

βiTi(Gi ,αi) (8.1)

subject to
N

∑
i=1

αi

1+αi
= 1 (8.2)

Gi ≥G0 i ∈ {1, · · · ,N} (8.3)

In this simple model,

1. N is the number of terminals.
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2. The throughput of terminali is defined asRCTi(Gi ,αi), with

Ti(Gi ,αi) :=
f (Giαi)

Gi
(8.4)

3. Gi = RC/Ri , i ∈ {1, . . . ,N} is the spreading gain of terminali; i.e., the ratio of the channel’s

chip rate ,RC to the terminal’s data transmission rateRi (bits per second).G0≥ 1 is the lowest

available spreading gain (determined by the highest available data rate).

4. αi is the carrier-to-interference ratio (CIR) of the signal from terminali received at the base

station.αi is defined as,

αi :=
Pihi

∑N
j=1
j 6=i

Pjh j +σ2
=

Qi

∑N
j=1
j 6=i

Q j +σ2
(8.5)

with Pi the transmission power of terminali, hi its “gain” (path loss) coefficient,hiPi := Qi

its received power, andσ2 a representative of the average noise power and, possibly, out-of-

cell interference. It is shown in appendix B, that withσ2 = 0, the CIR’s must be such that

∑αi/(1+αi) = 1 (constraint (8.2)) to ensure feasibility.

5. The productGiαi , denoted asγi , is terminali’s signal to interference (SIR) ratio.

6. βi ≥ 1 is a weight, which admits various practical interpretations. Without loss of generality,

we set 1= β1≤ ·· · ≤ βN. If only 2 classes of terminals are considered, sayN1 “light weight”

terminals andN2 “important” ones, then 1= β1 = · · · = βN1 andβ = βN1+1 = · · · = βN1+N2

with N1 +N2 = N.

7. We assume that there is a real-valued frame-success function (FSF) which gives the probabil-

ity of the correct reception of a data packet in terms of the received SIR. We assume that this

function is such thatf (x) := fS(x)− fS(0) has the general properties of the generalized “S-

curve” discussed in chapter 2 (see fig. (8.1)), and that it has a continuous second derivative.

BecausefS(0) is very small, the difference betweenfS and f is generally negligible. Never-

theless, this correction is made for technical reasons. It is stressed that no actual function is

used, except to provide numerical examples. Our analysis should apply to a wide variety of

physical layer configurations, as long as they give rise to an FSF with an S-shaped graph. To

provide numerical examples, we use the FSF corresponding, under suitable assumptions, to

non-coherent FSK modulation, with no FEC, and packet size 80, which is,

f (x) =
[
1− 1

2
exp
(
−x

2

)]80

(8.6)

8. Certain technical results require a few additional assumptions that are stated when needed,

and discussed at the end of the chapter.
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It is sometimes useful to observe that constraint (8.2) can be expressed as

N

∑
i=1

1
1+αi

= N−1 (8.7)

In the development below, an asterisk used as a superscript on a variable denotes a specific value

of the variable which satisfies certain optimality condition. Terminals operating at maximal data

rate are referred to as “favored” or “favorite”, and terminals in the high-weight class are called

“important”, as opposed to “ordinary”. Some ordinary terminals may be “favored” in the sense that

they may be allowed to operate at the highest available data rate.

8.2.2 General solution procedure

The general procedure is as follows:

• Create an “augmented” objective function, combining the original objective function with

Lagrange multipliers and the constraint equations

• Set up the first-order necessary optimizing conditions (FONOC). This involves setting the

partial derivative of theaugmentedobjective function with respect to each variable equal

to zero. Moreover, inequalities of the formG0−Gi ≤ 0 contribute equations of the form

µi(G0−Gi) = 0, (complementary slackness condition), whereµi is a Lagrange multiplier.

• Solve FONOC. Evidently, each equation of the formµi(G0−Gi) = 0 requires that ifGi > G0 ,

thenµi must equal zero; and that ifµi 6= 0, Gi must equalG0. Both possibilities must be

considered separately while finding various solutions to FONOC. It is necessary that eachµi

be non-positive, for a maximizer.

• A solution to FONOC provides a candidate for a maximizer. The second-order sufficient

conditions (SOSC)mayconfirm the candidate as a maximizer. This maximizer maynot be

global. If the SOSC are not verified, then the solution is obtained by directly verifying which

of all the points satisfying FONOC yields the highest weighted throughput.

8.3 Special Case: N=2

For pedagogical reasons, a two-terminal-only situation is considered first.

To be solved:

Maximize
f (G1α1)

G1
+

β f (G2α2)
G2

(8.8)

subject toα1α2 = 1 ; G1 ≥G0 ; G2 ≥G0

It can be easily verified that for N=2, the constraint (8.2) reduces toα1α2 = 1 . This also follows

from the fact that, with negligible noise,α1 := Q1/Q2 := 1/α2.
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8.3.1 Augmented objective function

The augmented objective function is

φ(G1,G2,α1,α2) =
f (G1α1)

G1
+

β f (G2α2)
G2

+λ(1−α1α2)+
2

∑
i=1

µi(G0−Gi) (8.9)

8.3.2 First-Order Necessary Optimizing Conditions (FONOC)

The FONOC can be expressed in vector form, withγi = Giαi , as:
(γ1 f ′(γ1)− f (γ1))/G2

1−µ1

β(γ2 f ′(γ2)− f (γ2))/G2
2−µ2

f ′(γ1)−λα2

β f ′(γ2)−λα1

=


0

0

0

0

 (8.10)

with


α1α2 = 1

µ1(G0−G1) = 0 µ1 ≤ 0

µ2(G0−G2) = 0 µ2 ≤ 0

(8.11)

8.3.3 Hessian Matrix

In order to check the sufficient second-order conditions the Hessian matrix of second partial deriva-

tives of the augmented objective function , denoted asφ2xx, is needed. This matrix is given by:

φ2xx =


ψ(G1,α1) 0 α1 f ′′(γ1) 0

0 βψ(G2,α2) 0 βα2 f ′′(γ2)
α1 f ′′(γ1) 0 G1 f ′′(γ1) −λ

0 βα2 f ′′(γ2) −λ βG2 f ′′(γ2)

 (8.12)

In equation (8.12), strictly for notational convenience, the functionψ is defined, withγi = Giαi , as:

ψ(Gi ,αi) =
2

G3
1

[
f (γi)− γi f ′(γi)+

1
2

γ2
i f ′′(γi)

]
(8.13)

8.3.4 Finding the optimizer

8.3.4.1 Looking inside the feasible region

It is natural to start looking for a solution to FONOC that lies in the interior of the feasible region.

That is,µ1 = µ2 = 0 is set, which allows bothG1 andG2 to be greater thanG0 (see equations (8.11)).

8.3.4.1.1 An Interior solution to FONOC Working with the top 2 rows of the matrix equation

(8.10),γi f ′(γi) = f (γi) is obtained, which is an equation of the general form:
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x f ′ (x) = f (x) (8.14)

Chapter 2 shows that for the class of generalized sigmoidal functions, such asf , there is a unique

positive valueγ0 which satisfies equation (8.14). This value can be graphically identified in figure

(8.1) as the abscissa of the point where the graph off is tangent to a ray emanating from the origin;

that is, tangent to the straight liney = f ′(γ0)x.

Therefore, if any values of the variables of interest satisfy, under the stated hypotheses, equations

(8.10) and (8.11) , they must be such that:

G∗
1α∗1 = G∗

2α∗2 = γ0 (8.15)

By working with the bottom half of the matrix equation (8.10), it is established that:

λ =
f ′(G∗

1α∗1)
α∗2

=
β f ′(G∗

2α∗2)
α∗1

(8.16)

Now, substituting equation (8.15) into equation (8.16),α∗1/α∗2 = β results, which leads to a complete

“interior” solution to FONOC: 
G1

G2

α1

α2

=


γ0/
√

β√
βγ0√
β

1/
√

β

 (8.17)

Notice that, in order for these values to be feasible,G∗
i ≥ G0; i.e., G0

√
β ≤ γ0. Replacing these

values into the objective function yields

TB =
f (γ0)
G∗

1
+

β f (γ0)
G∗

2
=

f (γ0)
√

β
γ0

+
β f (γ0)
γ0
√

β
(8.18)

This is a closed form solution. If the functionf is known,γ0 can be easily obtained graphically

(see figure (8.1)) or equation(8.14) can be solved numerically. For instance, for the FSF given by

equation (8.6),γ0 = 10.75, f (γ0) = 0.83 .

This allocation has an interesting property: it is ‘balanced’ in the sense that both users experi-

ence the same weighted throughput:f (γ0)
√

β/γ0.

8.3.4.1.2 Verifying the Second-order sufficient conditions To characterize the interior “sta-

tionary point” that was just found, the second order conditions, which depend uponφ2xx, the matrix

of second partial derivatives (Hessian matrix) of the augmented objective functionφ.

Essentially, at a point satisfying the FOC, i.e., a “stationary” point, for any vector~h along a

feasible direction, the triple product~hTφ2xx
~h is positive if the “stationary” point corresponds to a

local minimum, and this product is negative if the stationary point corresponds to a local maximum.

If neither of these conditions hold, then the point is a “saddle point”.
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A feasible direction is one that is tangent to the curve representing the constraint relationship.

Hence, denoting the constraint curve asb(G1,G2,α1,α2) =α1α2−1 = 0, only vectors~h satisfying

∇b•~h = 0 needs to be considered, that is, vectors normal to the gradient of the constraint curve. At

the interior stationary point,

∇b =


0

0

α∗2
α∗1

=


0

0

1/
√

β√
β

 ∝


0

0

1

β


Then, it is easily verified that any vector~h of the form

[
a1 a2 βa3 −a3

]T
, where theai ’s are

arbitrary real numbers, satisfies∇b•h = 0 .

It will prove convenient to express such vector as the product of a “transformation” matrix,M

times an arbitrary vector~a =
[

a1 a2 a3

]T
. It is trivial to verify that

M =


1 0 0

0 1 0

0 0 β
0 0 −1

 is such that h̃
4
= M ×

 a1

a2

a3


satisfies the desired condition.

In terms ofM and~a, the second-order conditions for the stationary point under consideration

can be re-stated as follows. At such point, for any vector~a, the product~aTMTφxxM~a is positive if

the stationary point corresponds to a local minimum, and this product is negative if the stationary

point corresponds to a local maximum. If neither of these conditions hold, then the stationary point

is a “saddle point”.

Because the components of~a are arbitrary, the above conditions can be expressed in terms of

the matrixMTφxxM . This matrix ispositive definiteif the stationary point corresponds to a local

minimum, and it isnegative definiteif the stationary point corresponds to a local maximum. If this

matrix isindefinitethis point is a “saddle point”.

The matrix of second-partial derivatives is given by equation (8.12), which must be evalu-

ated at the point of interest, given by equation (8.17). For these values,φ2xx becomes, with

ρ0 = f ′(γ0)/ f ′′(γ0):

φ2xx =


β
γ0

0 1 0

0 1
γ0β 0 1

1 0 γ0
β −ρ0

0 1 −ρ0 βγ0


√

β f ′′ (γ0)

Some algebra yields:
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MT×φ2xx√
β f ′′ (γ0)

=


β
γ0

0 1 0

0 1
γ0β 0 1

β −1 γ0 +ρ0 −β(γ0 +ρ0)


And some more algebra yields:

MT×φ2xx×M√
β f ′′ (γ0)

=


β
γ0

0 β
0 1

γ0β −1

β −1 2β(γ0 +ρ0)

 (8.19)

Given the development in chapter 2,f′′(γ0) is negative. Thus, if the matrix
(
MTφ2xxM

)
/ f ′′(γ0) is

positive definitethe point being tested is a local maximum. If all three principal minor determinants

of a matrix are positive, the matrix is positive definite.

The first determinant is simply the first element of the matrix, which clearly is a positive number.

The second determinant is 1/γ2
0, which is also positive. However, after some algebra the determinant

of the whole matrix is obtained as:
2β f ′(γ0)
γ2

0 f ′′(γ0)

But, this expression is negative, because the first derivative off is positive everywhere, and its

second derivative is negative atγ0.

Hence, the first two principal minor determinants are positive, while the third one negative. The

concerned matrix isindefinite. Therefore, the interior stationary point is neither a local minimizer

nor a local maximizer. It is a“saddle point”.

8.3.4.2 A Single Favorite Boundary Solution (SFBS)

In the preceding section, an interior solution to FONOC was identified. But that allocation is a non-

maximizer, which suggests that a maximizer be sought over the “boundary” of the feasible region;

i.e., whenGi = G0 for one or bothi. Below, single favorite boundary solution (SFBS) solution,

in which the important terminal is the only one transmitting at the highest allowable data rate, is

found. That is,G2 = G0, andµ1 = 0 (which allowsG1 ≥G0) are set. (With only two terminals, the

phrase “single favorite” is redundant, since there can be at most one favorite. But the phrase is kept

because it has a similar usage in the poly-terminal scenario)

8.3.4.2.1 Finding the SFBS For the reader’s convenience, equation (8.10) is reproduced below:
(γ1 f ′(γ1)− f (γ1))/G2

1−µ1

β(γ2 f ′(γ2)− f (γ2))/G2
2−µ2

f ′(γ1)−λα2

β f ′(γ2)−λα1

=


0

0

0

0


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Working with the first row of equation (8.10), and keeping in mind thatµ1 = 0 has been set,

G1α1 = γ0 (8.20)

is obtained, withγ0 as defined by equation (8.14).

Working with the bottom half of equation (8.10), and using the preceding result, it is established

that:

f ′(γ1)
α2

= λ =
β f ′(γ2)

α1
(8.21)

Combining equations (8.20) and (8.21), one obtains

G2
0 f ′(γ0)
G0α2

= β f ′(γ2)G0α2 ⇒ x2 f ′(x)
f ′(γ0)

=
G2

0

β
(8.22)

with x := G0α2 = γ2. Hence,α∗2 is obtained by solving equation (8.22).

It is observed that, for the class of functions being considered,x2 f ′(x) is a “bell-shaped” func-

tion, as shown by figure 8.1.

0

1

SIR
γ
0
 

f(x) 

f’(γ
0
)x 

∝f’(x) 

xf’(x) 

∝x2f’(x) 

Figure 8.1: A particularf (x) , x f ′(x), andscaledversions off ′(x), andx2 f ′(x). γ0 satisfiesx f ′(x) =
f (x)

This implies that, ifG2
0/β surpasses the “peak” of the function on the left hand side of equation

(8.22), then, this equation hasnosolutions. IfG2
0/β is sufficiently small, two values ofx will satisfy

equation (8.22). Denote the chosen value asδ0.

Now the second row of equation (8.10) yields the multiplier associated with the constraintG0−
G2 ≤ 0 as

µ2 =
δ0 f ′(δ0)− f (δ0)

G2
0/β

(8.23)
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It is necessary for a maximizer thatµ2 ≤ 0. This condition is best interpreted by writing it as

G2
0

β
µ2 = t2 d

dt
( f (t)/t)

∣∣∣∣
t=δ0

≤ 0

The development in chapter 2 shows that, for the class of functionsf being considered, the derivative

of f (t)/t is positive fort < γ0, is zero atγ0, and is negative fort > γ0(with γ0 defined by equation

(8.14)). Thus, in order forδ0 to lead to a maximizer, it is necessary that

δ0 ≥ γ0 (8.24)

As displayed in figure 8.1, it is possible that even ifG2
0/β falls below the maximal value of the

functionx2 f ′(x)/ f ′(γ0), it may still be too high, because the resulting intersection points may both

be less thanγ0, which would violate a necessary condition for a maximizer.

In view of the preceding development, of the two values satisfying equation (8.22), the larger

value, to the right of the peak, is chosen as a prospective maximizer. That is,δ0 is the largest value

satisfying:
δ2

0 f ′(δ0)
f ′(γ0)

=
G2

0

β
(8.25)

In terms ofδ0, a complete solution to FONOC is identified. By definition,δ0 = G0α2, which implies

thatα∗2 = δ0/G0 satisfies FONOC, and obviously so doesα∗1 = 1/α∗2 = G0/δ0. And since FONOC

requires thatG∗
1α∗1 = γ0, thenG∗

1 can be obtained asγ0/α∗1 = γ0δ0/G0.

Hence, the following single-favorite solution has been found:


G∗

1

G∗
2

α∗1
α∗2

=


γ0δ0/G0

G0

G0/δ0

δ0/G0

 (8.26)

But feasibility requires thatG∗
1≥G0, which imposes thatG2

0≤ γ0δ0, in addition to the requirements

discussed in the preceding paragraphs. But by definitionδ0 must satisfy equation (8.25). Thus,

G2
0 ≤ γ0δ0 implies that

βδ2
0 f ′(δ0)
f ′(γ0)

≤ γ0δ0 → βδ0 f ′(δ0)≤ γ0 f ′(γ0) = f (γ0) (8.27)

It is observed in figure 8.1, that the functionx f ′(x) has a bell shaped graph. Thus, in order for

condition (8.27) to be satisfied,δ0 must be significantly larger thanγ0. This further limits the

highest value of the ratioG2
0/β for which the SFBS exists.

For the frame-success function introduced previously as equation (8.6),γ0 = 10.75, andf (γ0) =
0.83. WhenG0 = 2 andβ = 2, bothx= 22.1 andx= 3.97 satisfy equation (8.22) . Hence,δ0 = 22.1.

This givesTSFBS= 1.01. By comparison, the ‘balanced’ solution only yieldsTB = 0.15
√

2 = 0.21,
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which is much less.

8.3.4.2.2 Second-order sufficient conditions As discussed in section 8.3.4.1.2, the optimality

of the SFBS depends upon the matrixφ2xx given by equation (8.12). Essentially, at a point satisfying

the FONOC, i.e., a stationary point, if foranyvector~h along a feasible direction the triple product
~hT × φ2xx×~h is positive, then the stationary point corresponds to a local minimum, and if this

product is negative then the stationary point corresponds to a local maximum.

A feasible direction is one that is tangent to the curve representing the equality constraint, as

well as to any curve corresponding to an “active” inequality constraint. An “active” inequality

constraint is one satisfied as equality. In the case under discussion, exactly one inequality is pre-

sumed to be active:G0−G2 ≤ 0, sinceG2 = G0. Hence, denoting the equality constraint curve

asb(G1,G2,α1,α2) = α1α2−1 = 0, and the active inequality asd(G1,G2,α1,α2) = G0−G2 = 0,

only vectors~h satisfying∇b•~h = 0 AND ∇d•~h = 0 need to be considered. It is immediate that:

∇bT =
[

0 0 α2 α1

]
=
[

0 0 1
α1

α1

]
(8.28)

−∇dT =−
[

0 1 0 0
]

(8.29)

Thus, only vectors~h of the form
[

a1 0 −α1a2
1

α1
a2

]T
with a1 anda2 arbitrary, need to be

considered.

The matrix of second-partial derivatives is given by equation (8.12), which must be evaluated at

the point of interest, given by equation (8.26). For these values,φ2xx becomes:

φ2xx =


G3

0
γ0δ3

0
f ′′(γ0) 0 G0

δ0
f ′′(γ0) 0

0 βψ00 0 βδ0
G0

f ′′(δ0)
G0
δ0

f ′′(γ0) 0 γ0δ0
G0

f ′′(γ0) −βδ0
G0

f ′(δ0)

0 βδ0
G0

f ′′(δ0) −βδ0
G0

f ′(δ0) βG0 f ′′(δ0)


with

ψ00 =
2

G3
0

[
f (γ00)− γ00 f ′(γ00)+

1
2

γ2
00 f ′′(γ00)

]
For~hT =

[
a1 0 −α1a2

1
α1

a2

]
,~hT×φ2xx is obtained as

[
a1 0 −G0

δ0
a2

δ0
G0

a2

]


G3
0

γ0δ3
0

f ′′(γ0) 0 G0
δ0

f ′′(γ0) 0

0 βψ(G2,α2) 0 βα2 f ′′(δ0)
G0
δ0

f ′′(γ0) 0 γ0δ0
G0

f ′′(γ0) −βδ0
G0

f ′(δ0)

0 βδ0
G0

f ′′(δ0) −βδ0
G0

f ′(δ0) βG0 f ′′(δ0)

=
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
G3

0 f ′′(γ0)
γ0δ3

0
a1−

G2
0 f ′′(γ0)

δ2
0

a2

βδ2
0 f ′′(δ0)
G2

0
a2

G0 f ′′(γ0)
δ0

a1− γ0 f ′′(γ0)a2−
βδ2

0 f ′(δ0)
G2

0
a2

β( f ′(δ0)+δ0 f ′′(δ0))a2



T

Now, ~hT × φ2xx×~h is obtained by scalarly multiplying the vector just obtained by the vector[
a1 0 −α1a2

1
α1

a2

]T
, which yields :

G3
0

γ0δ3
0

f ′′(γ0)a2
1−

G2
0

δ2
0

f ′′(γ0)a1a2−
G2

0

δ2
0

f ′′(γ0)a1a2 +

G0γ0

δ0
f ′′(γ0)a2

2 +
βδ0

G0
f ′(δ0)a2

2 +
βδ0

G0
f ′(δ0)a2

2 +
βδ2

0

G0
f ′′(δ0)a2

2

This can be simplified as,

G3
0

γ0δ3
0

f ′′(γ0)a2
1−2

G2
0

δ2
0

f ′′(γ0)a1a2 +
G0γ0

δ0
f ′′(γ0)a2

2 +

2
βδ0

G0
f ′(δ0)a2

2 +
βδ2

0

G0
f ′′(δ0)a2

2 =

G0γ0

δ0
f ′′(γ0)

(
G2

0

γ2
0δ2

0

a2
1−2

G0

γ0δ0
a1a2 +a2

2

)
+

β
G0

a2
2

(
2δ0 f ′(δ0)+δ2

0 f ′′(δ0)
)

=

G0γ0

δ0
f ′′(γ0)

(
G0

γ0δ0
a1−a2

)2

+
βδ0

G0
a2

2

(
2δ0 f ′(δ0)+δ2

0 f ′′(δ0)
)

The first term is clearly negative, since the development in chapter 2 shows thatγ0 occurs to the

right of the inflexion point off , where this function is concave. The second term is also negative,

because 2δ0 f ′(δ0) + δ2
0 f ′′(δ0) equals the derivative of the functionx2 f ′(x) evaluated atδ0. It is

observed in figure 8.1 thatx2 f ′(x) is a bell-curve. Thus, ifδ0 is to the right of the “peak” of this

function (see discussion immediately preceding equation (8.25)),x2 f ′(x) is decreasingatδ0, which

means its derivative isnegativeat δ0.

8.3.4.3 “Greedy” allocation

The preceding section considered the SFBS, in whichonly the “important” terminal operates at the

lowest available spreading gain (highest data rate). It was observed that the SFBS fails to exist or is

infeasible ifG2
0/β is “too large”. This section seeks a “greedy” (favoriteless) solution to FONOC,

in which both terminals operate at the highest available data rate. Specifically,G1 = G2 = G0 is set.

8.3.4.3.1 Describing the greedy allocation For the reader’s convenience, equation (8.10) is

reproduced once again:
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
(γ1 f ′(γ1)− f (γ1))/G2

1−µ1

β(γ2 f ′(γ2)− f (γ2))/G2
2−µ2

f ′(γ1)−λα2

β f ′(γ2)−λα1

=


0

0

0

0


Working with the last two rows of equation (8.10) it is established that:

λ =
f ′(γ1)
γ2/G0

=
β f ′(γ2)
γ1/G0

⇒ γ1 f ′(γ1) = βγ2 f ′(γ2) (8.30)

with the constraint

γ1γ2 = G2
0 (8.31)

In order to satisfy the general first-order necessary optimizing conditions (FONOC), the SIR’s of

the important and the ordinary terminals, denoted respectively asx andy, must satisfy equation

(8.30), as well as the constraint equation (8.31). Equations (8.30) and (8.31) form a system of two

non-linear equations in two unknown which is in principle solvable, and may even be reduced to a

single-unknown equation. The solution is best described graphically, through figure 8.2.

It is observed that, for the class of functions being considered, the graph oft f ′(t) is “bell-

shaped”, as displayed at the top of figure (8.2). That is, there is exactly one pointt∗ at which this

function has a global maximum, and for everyt1 ≤ t∗ there is at2 ≥ t∗ such thatt1 f ′(t1) = t2 f ′(t2).
Thus, for every pair(x2,y2) which satisfies equation (8.30), withx2 ≥ t∗ andy2 ≥ t∗, there is a

corresponding pair(x1,y1), with x1 ≤ t∗ andy1 ≤ t∗, which also satisfies this equation, and so do

(x1,y2), and(x2,y1).

For a value ofx (the SIR of the important terminal), there are two values ofy (the SIR of the

ordinary terminal) which satisfiesβx f ′(x) = y f ′(y). When all points(x,y) satisfying this equation

are plotted, an “X-shaped” graph arises, as shown at the bottom sub-figure of figure 8.2. For a

fixed β, this graph has four distinct branches. The “North-East” branch corresponds to points like

(x2,y2) (top sub-figure), which satisfyβx2 f ′(x2) = y2 f ′(y2), and are both to the right of the peak of

x f ′(t). The “South-East” branch corresponds to points like (x2,y1), which also satisfiesβx2 f ′(x2) =
y1 f ′(y1), with y1 to the left of the peak. Analogously, the “North-West” and “South-West” branches

corresponds to points like (x1,y2) and (x1,y1), respectively, in the top sub-figure. Whenβ = 1, all

four branches have exactly one common point. In that case,y = x always satisfies equation (8.30),

but another possibility exists for anyx in the SE branch.

But in order to satisfy FONOC,x andy must also satisfy the constraint equation (8.31). Plotting

on the same axes this constraint, gives rise to the hyperbolic (L-shaped) curves. The intersection

points between the L-shaped and X-shaped graphs for the given (G0,β) pair lead to feasible solutions

to FONOC.

8.3.4.3.2 Eliminating some candidates It is necessary thatµi = (γi f ′(γi)− f (γi))/G2
0 (obtained

from the top two rows of equation (8.10)) be non-positive, for a maximizer. This condition is best



81

interpreted by writing it as

G2
0µi = t2 d

dt
( f (t)/t)

∣∣∣∣
t=γi

≤ 0 (8.32)

That is, in order for a considered point, say(G0,G0,y/G0,x/G0), to be a maximizer, it is necessary

that the derivative off (t)/t be non-positive when evaluated atx, and also when evaluated aty. The

development in chapter 2 shows that, for the class of functionsf being considered, the derivative

of f (t)/t is positive fort < γ0, is zero atγ0, and is negative fort > γ0(with γ0 defined by equation

(8.14)). Thus, in order for the point(G0,G0,y/G0,x/G0) to be a maximizer, it is necessary that

min{x,y} ≥ γ0 (8.33)

Figure 8.1 shows that the valueγ0 satisfyingt f ′(t) = f (t) occurs to the right of the peak of the graph

of x f ′(x); that is,γ0 > t∗, wheret∗ is the value that maximizest f ′(t). Whenγ0 > t∗, only points

in the NE “leg” of the “X” can be maximizers, since a pair(x,y) in any one of the other branches

would have at least one the coordinates less thanγ0. However, the possibility thatγ0 ≤ t∗ hasnot

been ruled out, theoretically.

8.3.4.3.3 Verifying the Second-order Sufficient Conditions Suppose that theL andX graphs

intercept at(x,y) ≡ (x,G2
0/x).

As discussed in sections 8.3.4.1.2 and 8.3.4.3.3, a point satisfying FONOC leads to a (local)

maximum, if at such point, foranyvector~halong a feasible direction, the triple product~hT×φ2xx×~h

is negative.

A feasible direction is one that is tangent to the curve representing the equality constraint, as well

as to any curve corresponding to an “active” inequality constraint. In the case under discussion, both

inequalities are presumed active. Hence, denoting the equality constraint asb(G1,G2,α1,α2) = 1−
α1α2 = 0, and the inequality constraints asd1(G1,G2,α1,α2)= G0−G1 = 0 andd2(G1,G2,α1,α2)=
G0−G2 = 0, only vectors~h satisfying∇b •~h = 0 AND ∇di •~h = 0 need to be considered. It is

immediate that:

∇bT =−
[

0 0 α2 α1

]
=− 1

G0

[
0 0 x y

]
(8.34)

−∇dT
1 =

[
1 0 0 0

]
(8.35)

−∇dT
2 =

[
0 1 0 0

]
(8.36)

Thus, only vectors~h of the forma
[

0 0 −y x
]T

with a arbitrary, need to be considered.

The matrix of second-partial derivatives (reproduced below) is given by equation (8.12), which

must be evaluated at the point of interest.
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Figure 8.2:
With the SIR of the important and ordinary terminal denoted, respectively, asx and y, FONOC
requires thatβh(x) = h(y) (eq. (8.30)), withh(t) := t f ′(t). Any of the pairs(x1,y1), (x2,y2), (x1,y2),
or (x2,y1) (top) satisfies this equation, but may not be feasible. Plotting all such points reveals an
“X-shaped” graph (NE, NW, SW and SE are directional labels). Plotting on the same axes the
constraint equation (8.31) gives rise to the hyperbolic (L-shaped) curves. The intersection points
between the L-shaped and X-shaped graphs for the given (G0,β) pair lead to feasible solutions to
FONOC. WhenG0 is “large”, the “L” intersects the NE leg of the “X”, which yields a maximizer.
If G0 is low enough, the hyperbola ”L”only intersects the SW leg of the X-curve, which leads to a
minimum.
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φ2xx =


ψ(G1,α1) 0 α1 f ′′(γ1) 0

0 βψ(G2,α2) 0 βα2 f ′′(γ2)
α1 f ′′(γ1) 0 G1 f ′′(γ1) −λ

0 βα2 f ′′(γ2) −λ βG2 f ′′(γ2)


At the point(G0,G0,y/G0,x/G0) =(G0,G0,G0/x,x/G0), taking into account that, from equation

(8.30),

G0 f ′(y)
x

≡ y
G0

f ′(y) = λ =
βG0 f ′(x)

y
=

βx
G0

f ′(x)

φ2xx becomes:

φ2xx =


∗ 0 ∗ 0

0 ∗ 0 ∗
∗ 0 G0 f ′′(y) − 1

G0
y f ′(y)

0 ∗ − β
G0

x f ′(x) βG0 f ′′(x)


(An asterisk denotes a non-zero element of this matrix that will not be needed, given the form of the

vectors~h being considered.)

For~hT =
[

0 0 −y x
]
,~hT×φ2xx is obtained as

[
∗ ∗ −G0y f ′′(y)− β

G0
x2 f ′(x) 1

G0
y2 f ′(y)+βG0x f ′′(x)

]
1

G0

~hT×φ2xx×~h = y2 f ′′(y)+
β

G2
0

x2y f ′(x)+
1

G2
0

xy2 f ′(y)+βx2 f ′′(x)

Observing thatxy= G2
0, the preceding sum can be written as:

βx f ′(x)+βx2 f ′′(x)+y f ′(y)+y2 f ′′(y) = βx
(

f ′(x)+x f ′′(x)
)
+y
(

f ′(y)+y f ′′(y)
)

Thus, if the sumβx( f ′(x)+x f ′′(x)) + y( f ′(y)+y f ′′(y)) is negative, the tested point is a (local)

maximizer, and if the sum is positive, the point is a minimizer. A deeper understanding of this

condition is gained by re-writing the sum as:

βx
d
dt

(
t f ′(t)

)∣∣∣∣
t=x

+y
d
dt

(
t f ′(t)

)∣∣∣∣
t=y

(8.37)

As displayed at the top of figure 8.2, the graph of the functiont f ′(t) is “bell-shaped”. Thus,t f ′(t)
has a global maximum at a specific value, sayt∗, and its derivative is positive fort < t∗, is zero at

t∗, and is negative otherwise.

If the point being tested lies on the NE leg of the X, bothx andy are to the right oft∗. In this

case, both terms in the sum (8.37) are negative, and the tested point is amaximizer. Likewise, if the

tested point lies on the SW leg of the X, bothx andy are to theleft of t∗. In this case, both terms in

the sum (8.37) are positive, and the tested point is aminimizer. If the tested point lies on any one of
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the other two legs of the X, it is not clear, a priori, whether the sum will be positive or negative.

8.3.4.3.4 The symmetric special case (β = 1) Considering the special case in whichβ=1 pro-

vides further insights into the general greedy allocation. In this special case, it is evident that

x = y= G0 (α1 = α2 = 1) (equal received powers) satisfies equation (8.30) and the constraint equa-

tion (8.31), and hence FONOC. In this case, the sum (8.37) can be written as

2G0
d
dt

(
t f ′(t)

)∣∣∣∣
t=G0

whose sign is determined by the position ofG0 with respect to the valuet∗that maximizest f ′(t).
The equal-received power allocation is a maximizer ifG0 > t∗, and a minimizer ifG0 < t∗.

In particular, for the function given as equation (8.6),x f ′(x) reaches its maximum att∗ = 7.95.

Thus, in this example, withβ = 1, γ1 = γ2 = G0 is a maximizer forG0 > 7.95, but a minimizer for

G0 < 7.95.

8.3.5 Discussion of the special case

The optimum power levels and data rates for two terminals transmitting to one base station, in a

scenario relevant to variable spreading gain CDMA, have been derived. The objective function is

the weighted network throughput, where the weights admit various practical interpretations, includ-

ing monetary prices paid by the terminals. The analysis identifies three allocations satisfying the

first-order necessary optimality conditions (FONOC): (i) a “balanced” allocation, in which both ter-

minals operate at the “preferred” SIR,γ0, and achieve equal weighted throughput; (ii) an “unfair”

assignment in which the important terminal operates at the highest available data rate, with the other

terminal achieving the SIR,γ0; and (iii) a “greedy” assignment in which both terminals operate at

the highest available data rate.

The balanced assignment is always suboptimal, implying that “fairness” (in the sense of equal

weighted throughput) comes at the expense of performance. The important terminal should always

operate at maximal data rate. Only when the ratioG0/
√

β is larger than certain threshold determined

by the physical layer through the FSF should both terminals operate at maximal data rate (G0 is the

smallest available spreading gain andβ is the weight of the favorite terminal). This makes intuitive

sense, because whenG0 is “large”, the highest available data rate is relatively small, and keeping

only one terminal operating at maximal data rate is not appealing, unless that terminal has “a lot of

weight”. However, when the highest available data rate is very high, an allocation in whichonly one

terminal operates at this rate is more appealing.

The “greedy” allocation is particularly treacherous, which is particularly clear when both termi-

nals are equally weighted. In this case, an equal-received-power assignment satisfies FONOC. But

this assignment can lead to either a maximum or a minimum, depending upon whetherG0 exceeds

a specific value determined by the physical layer.

It is significant that the greedy and the unfair allocations are complementary in this sense: a
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low G0 (highest available data rate is large) may turn the greedy allocation into a minimizer, but the

unfair allocation, which is a maximizer, needs a lowG0 in order to be feasible.

8.4 Throughput Optimization with N terminals

In the preceding section, the 2-terminal weighted throughput maximization problem is completely

solved analytically, including the verification of the second-order optimality conditions. This special

case illustrate the general solution procedure, and provides insights useful for the general analysis.

When N terminals are present, the analysis is more complicated. In particular, verifying the second-

order conditions symbolically does not appear practical. However, identifying the set of points

that satisfy the first-order optimality conditions (FONOC) is quite useful, because these points are

relatively few. Thus, for a given physical layer and system parameters, the optimizer can be found

by directly verifying which of these points yields the highest weighted throughput.

The present section focuses on a specific N-terminal scenario. The scenario studied is one

in which a few equally “important” terminals share a cell with many “ordinary” terminals. It is

presumed that the system can accommodate all the important terminals at the highest available data

rate. But it is not clear how many, if any, of the ordinary terminals should be set to operate at this

high rate, in order to maximize the cell’s weighted throughput. A general solution procedure for this

scenario is given. The cell-throughput maximizing data rates (through the corresponding spreading

gains) and the transmission power levels (through the corresponding carrier-to-interference ratios)

for all terminals are specified.

8.4.1 Augmented objective function

The pertinent augmented objective function isφ(G1, . . . ,GN,α1, . . . ,αN) =

N

∑
i=1

βiTi(Gi ,αi)+λ

(
N

∑
i=1

αi

1+αi
−1

)
+

N

∑
i=1

µi(G0−Gi) (8.38)

8.4.2 General First-Order Necessary Optimizing Conditions (FONOC)

The general FONOC can be expressed in vector form, withγi = Giαi , as:

β1∂T1(G1,α1)/∂G1−µ1
...

βN∂TN(GN,αN)/∂GN−µN

β1 f ′(γ1)+λ(1+α1)−2

...

βN f ′(γN)+λ(1+αN)−2


=



0
...

0

0
...

0


(8.39)
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with


∑N

i=1(1+αi)−1 = N−1

µ1(G0−G1) = 0
...

µN(G0−GN) = 0

(8.40)

Notice that
∂Ti(Gi ,αi)

∂Gi
=

γi f ′(γi)− f (γi)
G2

i

(8.41)

In order to verify the second-order sufficient conditions one needs the Hessian matrix of second

partial derivatives of our augmented objective function, denoted asφxx. ForN = 3, this matrix can

be written as:

φ3xx =



ψ1 0 0 ω1 0 0

0 ψ2 0 0 ω2 0

0 0 ψ3 0 0 ω3

ω1 0 0 χ1 0 0

0 ω2 0 0 χ2 0

0 0 ω3 0 0 χ3


(8.42)

Where, for notational convenience, :

ψi := βi
∂2Ti(Gi ,αi)

∂G2
i

= βi
γ2

i f ′′ (γi)+2( f (γi)− γi f ′ (γi))
G3

i

(8.43)

χi := βiGi f ′′ (γi)−2λ(1+αi)−3 (8.44)

and

ωi := αiβi f ′′(γi) (8.45)

The generalφxx can best be expressed as :

φxx =

[
D11 D12

D12 D22

]
(8.46)

In equation (8.46),D11, D22 andD12 areN×N diagonal sub-matrices, defined as:

D11 = diag(ψ1, . . . ,ψN) (8.47)

D22 = diag(χ1, . . . ,χN) (8.48)

D12 = diag(ω1, . . . ,ωN) (8.49)

with ψi , χi andωi defined by equations (8.43,8.44,8.45) respectively.
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8.4.3 Solving FONOC

8.4.3.1 Looking inside the feasible region

It is natural to start looking for a solution to FONOC that lies in the interior of the feasible region.

That is,µi = 0 is set, which allowsGi to be greater thanG0 for eachi (see equation (8.40)).

8.4.3.1.1 Identifying an interior solution to FONOC From the top half of the vector equation

(8.39), γi f ′(γi) = f (γi) is obtained. Therefore, from the discussion following equation (8.14), it

follows that

G∗
i α∗i = γ0 (8.50)

From the bottom half of the vector equation (8.39), it is established that:

−λ = βi f ′(G∗
i α∗i )(1+α∗i )

2 = β j f ′(G∗
j α
∗
j )
(
1+α∗j

)2
(8.51)

Now, replacing equation (8.50) into equation (8.51) yields :

1
1+α∗j

=

√
β j/βi

1+α∗i
(8.52)

α∗j ( j > 1) can be expressed in terms ofα1 through equation (8.52). This way, the constraint relation

(8.7) can be turned into an equation which can solved forα∗1:

∑N
j=1

√
β j/β1

1+α∗1
= N−1⇒ α∗1 =

B
(N−1)

−1 (8.53)

with β1 = 1, and

B :=
N

∑
j=1

√
β j (8.54)

Once the value ofα∗1 is known, equation (8.52) gives the value of eachα∗j . And once eachα∗i is

known, equation (8.50) yields immediately the correspondingG∗
i asγ0/α∗i . Therefore, a complete

“interior” solution to FONOC has been found in closed-form solution :

α∗i +1 =
B

(N−1)
√

βi
(8.55)

G∗
i = γ0/α∗i (8.56)

Notice that, in order for these values to be feasible,G∗
i = γ0/α∗i ≥ G0 or α∗i ≤ γ0/G0. Under the

construction 1= β1 ≤ ·· · ≤ βN, the largestα∗i is actuallyα∗1 (see equation (8.55)). Thus, this

condition requires thatB = ∑N
j=1

√
β j ≤ (N−1)γ0/G0.

It is stressed that this is a closed form solution.γ0 can be easily obtained from the graph of

function f (see fig. (8.1)), or equation (8.14) can be solved numerically.
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It is noteworthy that, ifβi = 1 for all i (terminals are equally “important”),B = N and equation

(8.55) reduces toα∗i = 1/(N−1). Thus, all terminals enjoy the same throughput.

8.4.3.1.2 Is the interior solution to FONOCa maximizer? A procedure similar to that applied

in section 8.3.4.1.2 can show that the previously found allocation (equations (8.55 and8.56)) is

neither a maximizer nor a minimizer, but a saddle point. But it is straightforward to argue that this

allocation isnot the global maximizer.

The non-optimality of the interior solution Each terminal, regardless of its weight, operates

with an SIR ofγ0. The spreading gainGi is obtained asγ0/αi with αi given by equation (8.55). This

equation yields anαi that is inversely proportional to
√

βi . Thus, the largestαi is that of terminal 1,

which has the lowest weight, and the smallestαi is that of terminalN. Thus, the terminal with the

least weight operates with the smaller spreading gainGi , which means the highest data rate of those

assigned, whereas the terminal with the most weight operates with the lowest data rate, of those

assigned!

This allocation does not maximize the weighted throughput. Simply re-assigning theαi in such

a way thatα∗1 is assigned to terminalN , andα∗N is assigned to terminal 1 produces a still feasible

allocation that yields a higher weighted throughput. Specifically,

N

∑
i=1

βi
f (Giαi)

Gi
=

N

∑
i=1

βi
f (γ0)
γ0/α∗i

∝
N

∑
i=1

βiα∗i = α∗1 +
N−1

∑
i=2

βiα∗i +βNα∗N (8.57)

By assigningα∗1 to terminal N andα∗N to terminal 1, the preceding sum is replaced by

α∗N +
N−1

∑
i=2

βiα∗i +βNα∗1 (8.58)

Subtracting (8.57) from (8.58) yields

βN(α∗1−α∗N)− (α∗1−α∗N) = (α∗1−α∗N)(βN−1) > 0

Thus, (8.58) is an improvement over (8.57). The interior solution to FONOC is a non-maximizer.

Second-order sufficient conditions The optimality of this stationary point depends upon

the matrix of second partial derivatives (Hessian matrix) ofφ, our augmented objective function,

denoted asφxx. Essentially, if at a point satisfying the FONOC, i.e., a stationary point, for any

vector~h along a feasible direction, the triple product~hT[φxx]~h is positive, then the stationary point

corresponds to a local minimum, and if this product is negative then the stationary point corresponds

to a local maximum. If neither of these conditions hold, then the point is a “saddle point”.

A feasible direction is one that is tangent to the curve representing the constraint relationship.

Hence, if we denote our constraint curve asb(G1,G2,α1,α2) = 0, (i.e.,b(G1, . . . ,GN,α1, . . . ,αN) .=
N−1−∑N

i=1(1+αi)−1), we only need to consider vectors~h satisfying∇b•~h = 0 , that is, vectors
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normal to the gradient of the constraint curve. For us,

∇b =



∂b/∂G1
...

∂b/∂GN

∂b/∂α1
...

∂b/∂αN


=



0
...

0

(1+α∗1)
−2

...

(1+α∗N)−2


(8.59)

but at our interior stationary point,α∗i is given by equation (8.55). Therefore,∇b becomes

∇b =
(N−1)2

B2



0
...

0

β1
...

βN


∝



0
...

0

β1
...

βN


(8.60)

Then, it is easily verified that any vector~h of the form
[

a1 · · · aN b1 · · · bN

]T
, where

the ai ’s and bi ’s are real numbers, with∑N
i=1 βibi = 0, satisfies∇b •~h = 0. That is, the vector

~b :=
[

b1 · · · bN

]T
must be orthogonal to the vector~β :=

[
β1 · · · βN

]T
.This will happen,

for instance, ifbN =−
(
∑N−1

i=1 βibi
)
/βN.

It will prove convenient to express such vector as the product of a “projection” matrix,M, by

an arbitrary vector~a :=
[

a1 · · · aN b1 · · · bN−1

]T
of length 2N−1. Let us describe this

process for the special case in whichN = 3. Subsequently, we will generalize it.

With N=3, the matrixM takes the form

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 −β1
β3

−β2
β3


(8.61)
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so that with~a :=
[

a1 a2 a3 b1 b2

]T
an arbitrary 5-dimensional vector,

M ×~a =



a1

a2

a3

b1

b2

(−β1b1−β2b2)/β3


(8.62)

It is easily verified that the scalar product of the vectorM ×~a by
[

0 0 0 β1 β2 β3

]T

∝ ∇b always equals zero.

For a generalN, the desired matrix has the form:

M =

 IN 0

0 IN−1

01×N r

 (8.63)

(compare equations (8.63) and (8.61)), whereIN denotes the identity matrix of sizeN, 0 denotes

the zero matrix of appropriate dimension, 01×N denotes an all-zero row of lengthN, andr is a row

vector of lengthN−1 of the form:

r =− 1
βN

[
β1 · · · βN−1

]
The second-order conditions for the stationary point under consideration can be expressed in terms

of the matrixMT×φxx×M . If this matrix ispositive definite,then the stationary point corresponds

to a local minimum, and if it isnegative definitethen the stationary point corresponds to a local

maximum. If this matrix isindefinite, then this point is a “saddle point”. A square matrix is positive

definite if all its principal minor determinants are positive.

WhenN = 3, φ3xx is given by equation (8.42), in terms ofψi , χi , andωi . After some algebra,

we obtain,MT×φ3xx =



ψ1 0 0 ω1 0 0

0 ψ2 0 0 ω2 0

0 0 ψ3 0 0 ω3

ω1 0 −β1
β3

ω3 χ1 0 −β1
β3

χ3

0 ω2 −β2
β3

ω3 0 χ2 −β2
β3

χ3


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And some more algebra yieldsMT×φ3xx×M =

ψ1 0 0 ω1 0

0 ψ2 0 0 ω2

0 0 ψ3 −β1
β3

ω3 −β2
β3

ω3

ω1 0 −β1
β3

ω3 χ1 +
(

β1
β3

)2
χ3

β1β2χ3

β2
3

0 ω2 −β2
β3

ω3
β1β2

β2
3

χ3 χ2 +
(

β2
β3

)2
χ3


(8.64)

At this interior stationary point, (see equations (8.55,8.56)), the elements of this matrix can be

written as (recall thatG∗
i α∗i = γ0):

ψ∗
i

f ′′ (γ0)
= βi

γ2
0

(G∗
i )

3 ≡ βi
(α∗i )

3

γ0

ω∗
i

f ′′(γ0)
= βiα∗i

and, since

χ∗i =

βiG
∗
i f ′′ (γ∗i )−2λ∗(1+α∗i )

−3 =

βi
γ0

α∗i
f ′′ (γ0)+2

[
βi f ′ (γ0)(1+α∗i )

2
]
(1+α∗i )

−3 =

βi f ′′ (γ0)
(

γ0

α∗i
+2

f ′ (γ0)
f ′′ (γ0)

(1+α∗i )
−1
)

it is convenient to set
χ∗i

f ′′ (γ0)
= βi χ̂i

where, for notational convenience,

χ̂i :=
(

γ0

α∗i
+

2ρ0

1+α∗i

)
(8.65)

is defined; and

ρ0 :=
f ′(γ0)
f ′′(γ0)

(8.66)

Hence, at the point being tested, equation(8.64) leads toMT×φ3xx×M/ f ′′ (γ0) =
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

β1α3
1

γ0
0 0 β1α1 0

0 β2α3
2

γ0
0 0 β2α2

0 0 β3α3
3

γ0
−β1α3 β2α3

β1α1 0 −β1α3 β1χ̂1 + β2
1χ̂3

β3

β1β2χ̂3
β3

0 β2α2 −β2α3
β1β2χ̂3

β3
β2χ̂2 + β2

2χ̂3

β3


(8.67)

The objective is to test whether the matrixMT × φxx×M is negative definite, which would

confirm the interior stationary point as a maximizer. It has been shown in chapter 2 that for the class

of functions being considered,f ′′ (γ0) is always negative. Therefore, an equivalent test is whether

the matrixMT×φxx×M/ f ′′ (γ0) (equation (8.67)) is positive definite.

A matrix is positive definite if and only if each one of its principal minor determinants are

positive. It is immediate that the determinants of the first three principal minors of the matrix given

in (8.67) , [
β1α3

1

γ0

]
,

 β1α3
1

γ0
0

0 β2α3
2

γ0

 and


β1α3

1
γ0

0 0

0 β2α3
2

γ0
0

0 0 β3α3
3

γ0


are all positive.

The fourth principal minor is
β1α3

1
γ0

0 0 β1α1

0 β2α3
2

γ0
0 0

0 0 β3α3
3

γ0
−β1α3

β1α1 0 −β1α3 β1χ̂1 + β2
1χ̂3

β3


whose determinant is

β2α3
2

γ0

∣∣∣∣∣∣∣∣
β1α3

1
γ0

0 β1α1

0 β3α3
3

γ0
−β1α3

β1α1 −β1α3 β1χ̂1 + β2
1χ̂3

β3

∣∣∣∣∣∣∣∣ =

β2α3
2

γ0

[(
β1χ̂1 +

β2
1χ̂3

β3

)
β1β3α3

1α3
3

γ2
0

+

−
β2

1β3α2
1α3

3

γ0
−

β3
1α2

3α3
1

γ0

]
=

β2
1β2α3

1α3
2α3

3

γ2
0

[
β3χ̂1 +β1χ̂3

γ0
− β3

α1
− β1

α3

]
The question is then whether

(β1χ̂3 +β3χ̂1)
<
> γ0

(
β3

α1
+

β1

α3

)
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i.e, (replacinĝχi with its defining expression (8.65)), whether

β1γ0

α3
+

2β1ρ0

1+α3
+

β3γ0

α1
+

2β3ρ0

1+α1

<
>

β3γ0

α1
+

β1γ0

α3

i.e., whether(
2β1

1+α3
+

2β3

1+α1

)
ρ0

<
> 0 (8.68)

Observe that for the class of functions being considered,ρ0 = f ′(γ0)/ f ′′(γ0) is always negative,

becausef ′(x) is positive everywhere, and it has been shown in chapter 2 thatf ′′(γ0) is negative.

Therefore, the left-hand side of inequality (8.68 ) is less than zero, which proves that the determinant

is in factnegative!

In summary, the first three principal minor determinants arepositive, while the fourth such

determinant isnegative. This implies that the concerned matrix isindefinite. Therefore, the interior

stationary point is neither a local minimizer nor a local maximizer. It is asaddle point.

8.4.3.2 Single-Favorite Boundary Solution (SFBS)

An allocation satisfying FONOC, where every terminal’s data rate is less than the highest available

value (equations (8.56,8.55)) was found. Unfortunately, this allocation is not the desired maximizer.

This indicates that the true maximizer is a non-interior solution to FONOC; i.e., a solution in which

one or more terminals operate at the lowest available spreading gain (highest available data rate). In

principle, the number of possible non-interior solutions could be very large, of the order of 2N. A

basic rationale is needed to systematically search for these solutions.

A reasonable starting point is to to seek an allocation satisfying FONOC in which only the

spreading gain of the “most important” terminal is set at the lowest available value,G0 (i.e. this

terminal operates at the highest available data rate), with other terminals’ spreading gains to be

determined by the analysis. This is done below by settingGN = G0, andµi = 0 for 1≤ i < N.

8.4.3.2.1 General form of SFBS The firstN−1 rows of the vector equation (8.39), and the fact

thatµi = 0 for 1≤ i < N has been set, yield

Giαi = γ0 for 1≤ i < N (8.69)

with γ0 as defined by equation (8.14), and shown in figure (8.1).

The bottom half of the vector equation (8.39) leads to:

−λ = βi f ′(G∗
i α∗i )(1+α∗i )

2 for 1≤ i < N (8.70)
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and

−λ =
βN

G2
0

f ′(x)(G0 +x)2 (8.71)

with x := G0α∗N.

Combining equations (8.69 and 8.70) yields

1
1+α∗j

=

√
β j/βi

1+α∗i
for 1≤ i , j < N (8.72)

Through equation (8.72),α∗i (1 < i < N) can be expressed in terms ofα1. This way, the constraint

relation (8.7) becomes an equation with only two unknowns,α1 andαN. With

BN−1 :=
N−1

∑
j=1

√
β j (8.73)

substituting equation (8.72) into (8.7) (∑i(1+αi)−1 = N−1) yields

BN−1

1+α∗1
+

G0

G0 +x
= N−1 → (8.74)

G0 +x
1+α∗1

=
N−1
BN−1

x+
N−2
BN−1

G0 → (8.75)

α∗1 +1 =
BN−1

N−1− (1+α∗N)−1 (8.76)

Equations (8.70, and 8.71) can be combined as :

βN f ′(x)(G0 +x)2 = G2
0 f ′(γ0)(1+α∗1)

2 (8.77)

which can be put (using equation (8.75)) as(
C1

x
G0

+D1

)2 f ′(x)
f ′(γ0)

=
1

βN
(8.78)

with

C1 =
N−1
BN−1

; D1 =
N−2
BN−1

(8.79)

Assuming that a meaningful solution to equation (8.78) can be found, denote such solution asδ0. In

terms ofδ0, a complete allocation satisfying FONOC can be identified. By definition,δ0 = G0α∗N
which implies thatα∗N = δ0/G0 satisfies FONOC. Fromα∗N, equation (8.76) gives immediatelyα∗1,

and fromα∗1 and equation (8.72), eachα∗i (1 < i < N) is obtained. And since eachG∗
i (1≤ i < N)

must satisfyG∗
i α∗i = γ0 (equation (8.69)), once eachα∗i (1< i < N) is known, so is the corresponding



95

G∗
i . The complete allocation is given by:

G∗
N = G0 (8.80)

G0α∗N = γ∗N = δ0 (8.81)

for 1≤ i < N

α∗i =
1√
βi

BN−1

N−1− (1+δ0/G0)
−1 −1 (8.82)

G∗
i α∗i = γ∗i = γ0 (8.83)

However, eachG∗
i must satisfyG∗

i ≥G0 or α∗i ≤ γ0/G0. Equation (8.82) indicates thatα1 ≥ αi for

all i. Thus, it suffices that

α∗1 =
BN−1

N−1− (1+δ0/G0)
−1 −1≤ γ0/G0 (8.84)

8.4.3.2.2 Existence of this solution The preceding allocation depends on a solution to the single-

variable algebraic equation (8.78). Below, the conditions under which this algebraic equation has

solution(s) are examined.

Observe, first, thatC1x/G0 + D1 ≤ x+ 1. This is so, because the left-hand side of this in-

equality is largest whenG0 andBN−1 are smallest (see equations (8.79)). Because of technolog-

ical limitations,G0 ≥ 1 (the highest available data rate cannot exceed the channel’s “chip rate”).

And, BN−1 = ∑N−1
j=1

√
β j ≥ N−1, since, by construction, 1= β1 ≤ βi for ∀i. Hence,C1 ≤ 1 and

D1 ≤ (N−2)/(N−1)≤ 1. All this implies thatC1x/G0 +D1 ≤ x+1.

For the class of functions being considered, the graph of the functionx2 f ′(x) is observed to be

“bell-shaped”, as displayed by figure (8.1), and so is the graph of(x+1)2 f ′(x)/ f ′(γ0). On the basis

of the preceding paragraph, it can be further argued that the function(C1x/G0 +D1)
2 f ′(x)/ f ′(γ0)

is also bell-shaped. This implies that, ifG0 is “too large”, the “peak” of this function may fall below

1/βN, unlessβN is also “very large”. Thus, equation (8.78) may have no solution. On the other

hand, whenG0 is sufficiently small and/orβN is sufficiently large, two values ofx, on either side of

the peak of the concerned function, sayx∗1 ≤ x∗2, will satisfy equation (8.78). Intuitively, one would

expect that the larger of these two values be the best candidate for a maximizer. However, a larger

SIR for the favorite terminal leads to a smaller throughput for the non-favored terminals. Thus,

with many non-favored terminals and just one favorite, it is possible that the network weighted

throughput be higher when the SIR of the favorite terminal is the lower of the two values satisfying

eq. (8.78). But this may not be yield a global maximum.

On the other hand, the nth row of equation (8.39) yields the multiplier associated with the

constraintG0−GN ≤ 0 as

µN =
δ0 f ′(δ0)− f (δ0)

G2
0/βN

(8.85)
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It is necessary for a maximizer thatµN ≤ 0. This condition is best interpreted by writing it as

G2
0

βN
µN = t2 d

dt
( f (t)/t)

∣∣∣∣
t=δ0

≤ 0

The development in chapter 2 shows that, for the class of functionsf being considered, the derivative

of f (t)/t is positive fort < γ0, is zero atγ0, and is negative fort > γ0(with γ0 defined by equation

(8.14)). Thus, in order forδ0 to lead to a maximizer, it is necessary that

δ0 ≥ γ0 (8.86)

Thus, even if 1/βN falls below the maximal value of the function(C1x/G0 +D1)
2 f ′(x)/ f ′(γ0), the

resulting intersection points may both be less thanγ0, which would violate a necessary condition

for a maximizer.

8.4.3.3 A Multi-Favorite Boundary Solution (MFBS)

The remainder of this investigation focuses on the special case in whichβi = 1 for i = 1. . .N1, and

βi = β > 1 otherwise. That is, there are only two possible weights.

The single favorite boundary solution to FONOC discussed in the preceding section maynot

exist, and even if it does exist, it maynot lead to a global maximizer. This section investigates a

more general solution to FONOC in which all the important terminals,N2, and several ordinary

terminals, sayn1 ≤ N1, operate at maximal data rate.

8.4.3.3.1 General structure of the solution There areN1− n1 non-favored terminals. Thus,

µi = 0 for 1≤ i ≤ N1−n1 (see equations (8.40)). Working with the firstN1−n1rows of the vector

equation (8.39), we obtain, for 1≤ i , j ≤ N1−n1,

γi f ′(γi)− f (γi) = 0→ γ∗i ≡G∗
i α∗i = γ0 (8.87)

with γ0 defined as the unique positive solution to eq. (8.14).

We also establish by working with the bottom half of the vector equation (8.39) that:

−λ = f ′(G∗
i α∗i )(1+α∗i )

2 for 1≤ i ≤ N1−n1 (8.88)

and

−λ = f ′(G0α∗i )(1+α∗i )
2 for N1−n1 < i ≤ N1 (8.89)

and

−λ = β f ′(G0α∗i )(1+α∗i )
2 for N−N2 ≤ i ≤ N (8.90)
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Combining equations (8.87) and (8.88), we obtain

α∗i = α∗1 for 1≤ i ≤ N1−n1 (8.91)

For N1−n1 < i ≤ N1, eq. (8.89) leads ton1 equations of the form

f ′(G0α∗i )(1+α∗i )
2 = f ′(G0α∗j )

(
1+α∗j

)2

Evidently, this equation is satisfied with

α∗i = α∗j = y/G0 for N1−n1 < i , j ≤ N1 (8.92)

A similar analysis of eq. (8.90) leads to

α∗i = α∗j = x/G0 for N−n2 < i , j ≤ N (8.93)

Now, the constraint relation (8.7) (∑i(1+ αi)−1 = N− 1) becomes an equation with only three

unknowns,α1, x andy. Substituting eqs. (8.91, 8.92 and 8.93) into (8.7) yields

N1−n1

1+α1
+

n1

1+ y
G0

+
N2

1+ x
G0

= N−1 (8.94)

Equations (8.88, 8.89, and 8.90) imply that

f ′(y)
(

1+
y

G0

)2

= β f ′(x)
(

1+
x

G0

)2

(8.95)

β f ′(x)
(

1+
x

G0

)2

= f ′(γ0)(1+α∗1)
2 (8.96)

Equation (8.96) provides a closed-form expression forα∗1 in terms ofx:

α∗1 =
(

1+
x

G0

)√
β f ′(x)
f ′(γ0)

−1 (8.97)

The function on the right-hand side of eq. (8.97) takes on values as low as−1, and yields a bell-

shaped graph (such as that shown at the top of fig. 8.3). But, physically,α1 cannot be negative.

Thus, the existence of a MFBS in which all the ordinary terminals are active necessitates that the

SIR of the important terminals be held within certain interval. This range expands asβ grows, but

shrinks asG0 increases. Furthermore,α1 cannot be too large, either. This is so because, in order to

satisfy FONOC, the non-favored terminals must operate with SIR equal toγ0. Thus the spreading

gain for these terminals must equalγ0/α1. But if α1 is large, this ratio may be smaller thanG0,

which is the smallest allowable spreading gain. That is, it is necessary that 0< α1 ≤ γ0/G0. This

further constrains the values ofx that can be chosen.
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Within the appropriate range, eq. (8.97) allows us to write eq. (8.94) as :

n1

1+ y
G0

+
N1−n1(

1+ x
G0

)√
β f ′(x)
f ′(γ0)

+
N2

1+ x
G0

= N−1 (8.98)

Equations (8.95) and (8.98) form a system of two non-linear equations in two unknowns which is,

in principle, solvable. Once the appropriate values ofx∗ andy∗are known,α∗1, the optimal CIR

for terminals 1. . .N−n1, can be obtained from eq. (8.97), and the matching spreading gain, from

eq. (8.87), asγ0/α∗1. Thus, fromx∗ andy∗, a complete multi-favorite solution to FONOC can be

obtained. This solution is discussed below, its possible optimality is addressed.

8.4.3.3.2 Discussion of the MFBS The general structure of this solution to FONOC is very

similar to that of the dual-favorite solution (one important and one ordinary terminal operate at

highest data rate, and the rest operate with SIRγ0). The caption of figure 8.3 summarizes much of

what can be said about the MFBS. Further insights are given in section 8.4.4.2 through numerical

examples.

Generally, there are four intersection points, one in each of the branches of the concerned X-

curve. It is clear that, among the four intersection points, the NE one yields the largest throughput

for the favorite terminals, since bothx (the SIR of the important terminals) andy (the SIR of the

favored non-important terminals) are as high as possible. But the non-favored terminals, whose

SIR is γ0, by eq. (8.87), must also be considered. The throughput of each non-favored terminal

is obtained asf (γ0)/G1 = f (γ0)/(γ0/α∗1) ∝ α∗1. α∗1 is obtained fromx∗ through eq. (8.97), which

gives rise to a “bell shaped” graph (see comments immediately following eq. (8.97)). Thus,α∗1 (and

hence the throughput of the non-favored terminals) isdecreasingin x∗ beyond a certain value ofx∗.

Therefore, if the number of non-favored terminals,N1−n1, is larger than the number of favorites,

N2 +n1, the NE intersection point maynot lead to the largest overall weighted throughput.

Moreover, whenn1 = N1 so thatall terminals, whether important or not, operate at maximal

data rate, then the U-curve is replaced by a hyperbolic “L-curve”, as displayed in fig. 8.3. To see

this more clearly, observe that whenn1 = N1, we can solve eq. (8.98) fory in terms ofx, obtaining:

y
G0

=
N1

N1 +N2−1− N2
1+x/G0

−1 (8.99)

Forx= 0,y= G0/(N1−1); and asx→∞, y→−G0(N2−1)/(N1+N2−1).Thus, when all terminals

operate at maximal data rate, ifN2 > 1 (several “heavy-weight” terminals), there is an SIR valuex

beyond whichy would have to be negative in order to satisfy the constraint on the power ratios, eq.

(8.7). That is, the “L-curve” falls below zero forx sufficiently large. Hence, in this case,x cannot

exceedG0/(N2−1). Furthermore, for lowG0, the maximum value ofy, which isG0/(N1−1) could

be so low, that the L-curve may intersect only the SW leg of the X-curve, in which case, bothx and

y are “low”, and this would lead to aminimum, not a maximum. The message, in this case, is that

there are too many “favored” terminals (those operating at the highest data rate); some need to be
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Figure 8.3:
With the SIR of the favored terminals denoted asx (important) andy (ordinary), FONOC requires
thatβh(x) = h(y) (eq. (8.95)). Any of the pairs(x1,y1), (x2,y2), (x1,y2), or(x2,y1) (top) satisfies this
equation, but may not be feasible. When all such points are plotted, an “X-shaped” graph emerges
(NE, NW, SW and SE are directional labels). On the same axes, the U-shaped graph arising from
the constraint equation (8.98) is also plotted. The 4 intersection points between the U-shaped and
X-shaped graphs for the given (G0,β) pair lead to feasible solutions to FONOC, provided that the
resulting CIR and data rate for the non-favored terminals are also feasible. WhenG0 is “large”, the
“U” lies above the “X” and no intersections exist. In such a case,all terminals are set to operate at
the highest data rate, and the hyperbolic curves (from eq. (8.99)) replace the U curves. IfG0 is low
enough, the hyperbola mayonly intersect the SW leg of the X-curve, which leads to a minimum.
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downgraded to “non-favored”. On the other hand, with a large enoughG0, the hyperbola intersects

the “Northern legs” of the X. In this case, a maximum results. Thus, whenG0 is large enough, all

terminals should operate at the highest available data rate.

8.4.4 Finding the Global Maximizer

8.4.4.1 Solution procedure

In discussing the procedure, for expositional convenience we assume that there is only one important

terminal (N2 = 1). The key variable is the number of “favored” terminals (those operating at highest

data rate). At least the important terminal must be in this group, withn1, the number of favored

ordinary terminals, possibly being as low as zero, and as high asN1, the total number of ordinary

terminals.

• Setn1 = 0 (Single-favorite). Find, if possible, the 2 positive solutions to eq. (8.78), sayx∗1 and

x∗2. Either value can be a FONOC-solving SIR for the favorite terminal, and each leads to a

complete allocation. For each of these 2 values, through eq. (8.82) obtain a correspondingα,

the FONOC-solving CIR for the ordinary terminals, whose matching spreading gain isγ0/α.

If γ0/α > G0, a completefeasiblesolution to FONOC has been found, and the corresponding

weighted throughput can be calculated. Of the 2 solutions to eq. (8.78), the one yielding the

highest network weighted throughput should be chosen. It is possible that no single-favorite

solution to FONOC exists. In any case, setn1 = 1 and proceed to find a dual-favorite solution

.

• For 1≤ n1 < N1 (multifavorite solution) proceed as follows. Find the solutions (up to four) to

the system of equations formed by eq. (8.95) and eq. (8.98). This is the equivalent of finding

the four intersections between an X-shaped and a U-shaped graph (fig. 8.3). But not all of

these intersections are useful. If thex value is outside certain range, the FONOC-solving CIR

of the non-favored terminals,α, may be negative, or its matching spreading gain may be less

thanG0. Each oneof the useful intersections determine a complete solution to FONOC. The

SIRs of the favored terminals arex (important) andy (ordinary). The FONOC-solving CIR

for the non-favored terminals can be found from eq. (8.97), and the matching spreading gain

is γ0/α. The corresponding weighted network throughput can then be calculated for each

feasible solution, and the one leading to the greatest network throughput chosen. If the U

curve is “too wide”, meaning thatx would makeα negative, proceed to the next item, below.

Otherwise, incrementn1 and repeat this complete item (draw another U curve for the newn1),

until n1 = N1.

• Forn1 = N1 (all terminals, important or not, operate at the highest data rate), find the solution

to the system of equations formed by eq. (8.95) and eq. (8.99). This is the equivalent of

finding the intersections between an X-shaped graph and a hyperbola (fig. 8.3). The SIRs

of the important terminal isx and that of the ordinary terminals isy. The matching CIRs are
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respectivelyx/G0 andy/G0. Each intersection leads to a feasible solution to FONOC, from

which the weighted throughput can be calculated. If the only intersection lies in the SW leg

of the X, the all-favored solution is a local minimizer (useless).

• The global maximizer is found among the feasible FONOC-solving allocations already dis-

cussed, and is whichever yields the largest weighted throughput.

8.4.4.2 Numerical examples
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Figure 8.4:
With a moderateG0 = 20 andβ = 1.5, two single-favorite solutions exist, atx≈4.5 and 13 (top).
But the best yields only a throughput of 0.12 the chip rate. Fortunately, the bottom subplot shows
4 dual-favorite (n1 = 1) solutions at (13.8, 12.8), (13.7, 4.9), (4.7,12.7) and (4.7,5.0) leading to
weightedthroughput of 0.7, 0.65, 0.05 and 0.015 the chip rate, respectively. The “all favored”
solution (n1 = 9) leads to a minimum.

In the examples shown in figures 8.4 , 8.5 and 8.6, the frame-success function isf (x) = [1−
(1/2)exp(x/2)]80, corresponding to non-coherent FSK, no FEC, and packet size of 80 bits. The

“preferred” SIRγ0 = 10.75 for this FSF. There are 10 terminals, one of which is “important”.

The top subplotrefers to the “single-favorite” solution (SFBS), withx the SIR of the favorite.

The first order optimizing conditions (FONOC) require the SIR of the favorite to be at one of the

intersections between the shown bell-shaped curve and the line 1/β (eq. (8.78)). The hyperbola
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Figure 8.5:
With a smallG0 = 4 and a moderateβ = 1.5 the single-favorite solution exists (top), and leads to
the maximum. But all the multi-favorite solutions fail (intersections of U and X curves falls outside
the acceptable range ofx). An “all favored” solution exists (barely visible) but leads to a minimum.
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Figure 8.6:
With a highG0 = 150 andβ = 1.5 no single-favorite solution is available. Although the bell curve
does intercept the line 1/β (top), for anyx, α will be above 0.07, which means its matching spreading
gain will fall belowG0. The same problem plagues multi-favorite solutions (U-X intersections) with
1≤ n1 ≤ 8, all of which fall outside the acceptable range forx (shown by the thick green lines).
However, the “all-favored” solutions (n1 = 9) (intersections of the hyperbola and the X) do exist.
The NE intersection leads to the global maximizer.



104

at the top corresponds toα, the CIR of the non-favorites, as a function ofx (eq. (8.82)). Ifα
exceedsαmax = γ0/G0, its matching spreading gainγ0/α is less thanG0, the lowest available. The

bottom subplotcorresponds to the multi-favorite solutions, in which the important terminal andn1

ordinary ones operate with the lowest available spreading gainG0, while the remainingN1− n1

ordinary terminals operate with an SIR ofγ0. x andy are respectively the SIR of the important and

ordinary terminals operating at the highest data rate (“favored”). The X-graph arises from eq. (8.95),

and the U graph from eq. (8.98). U curves are numbered with the chosenn1. The 4 intersection

points between the U and X graphs lead to feasible solutions to FONOC, provided thatx lies inside

the intervals indicated by the thick green line. Outside these intervals, either the resulting CIR,α,

for the non-favored terminals, or its matching data rate is unacceptable.

8.5 Discussion

The optimal allocation of power levels and data rates for terminals transmitting to one base station,

in a scenario relevant to 3G CDMA, has been investigated. The objective function is theweighted

sum of each terminal’s throughput. For much of the development, two weights, which admit various

interpretations, including levels of importance, “utilities”, or monetary prices, are considered (cer-

tain results are given for the general case in which there are as many weights as there are terminals) .

The properties of the physical layer are embodied in the frame success function (FSF), which gives,

in terms of received signal-to-interference ratio (SIR), the probability that a data packet is correctly

received. Butno specific functional form (“equation”) is imposed on the FSF. It is assumed thatall

that is knownabout the FSF is that its graph is “S-shaped”, and the analysis follows from proper-

ties derived from this shape (a few additional technical assumptions to be discussed below are also

made, in order to characterize the solutions to FONOC). Therefore, this analysis applies to many

physical layer configurations of practical interest. Each physical layer has a preferred SIR,γ0, easily

identified in the graph of the FSF.

The special case in which only two terminals, one more “important” than the other, share the

cell has been thoroughly solved, and the the second-order conditions for a maximum have been

verified. The analysis of this special case illustrates clearly the solution procedure, and develops

much intuition. The 2-terminal case is separately discussed in section 8.3.5.

The N-terminal analysis focuses on a specific scenario, in which a few “important” terminals

share a cell with many “ordinary” terminals. It is presumed that the system can accommodate all

the important terminals at the highest available data rate. But it is not clear how many, if any, of the

ordinary terminals should be set to operate at this high data rate, and at which rate should operate

the others, in order to maximize the cell’s weighted throughput. A complete solution procedure

is given, which finds for all terminals the data rates (through the corresponding spreading gains)

and the transmission power levels (through the corresponding carrier-to-interference ratios) that

maximize the cell weighted throughput. Additionally, specific numerical examples are provided

and discussed. In the end, terminals end up divided in two groups: favored, which operate at the
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highest available data rate, and non-favored, which achieve the preferred SIR ofγ0. It is significant

that this SIR is a respectable value. For example, for a simple, but plausible FSF (equation (8.6)),

f (γ0) = 0.83. Thus, even “non-favored” terminals enjoy reasonable frame-error performance. The

set of favored terminals always include all important terminals, and may include some ordinary

ones.

In describing the solutions to FONOC, certain assumptions are made concerning the shapes of

the graphs arising from some functions of the derivative of the FSF. Specifically, in discussing the

two-terminal model, the observation that the graphs ofx f ′(x) andx2 f ′(x) are “bell curves”, as shown

in figure 8.1, play a fundamental role. In fact, what is needed is that these graphs be strictly quasi-

concave; i.e., these functions must be strictly increasing between zero and the respective positive

value where each has its maximum, and be strictly decreasing beyond that point. For the N-terminal

analysis, the assumptions made on the derived functions are (i) that the functionf is such that:

(ax+b)2 f ′(x) be strictly quasi-concave∀x≥ 0 and∀a,b ∈ [0,1] (8.100)

and (ii) that the shapes of the graphs displayed in fig. 8.3 are as shown. Specifically, the graphs of

(x/G0 +1)2 f ′(x) must be quasi-concave (which is implied by condition (8.100) witha= 1/G0 and

b = 1), which leads to theX-shaped graph; and thatf ′(x) be single-peaked (which is implied by

condition (8.100) witha = 0 andb = 1), and which leads to theU-graph.

However, as of this writing, no formal proof is available showing that forall S-curves these

graphs are as desired. Technically, this means that the analysis describing the solutions to FONOC

applies to the subset of S-curves for which the concerned graphs have the desired properties. Practi-

cally, this means that before applying this analysis, the engineer should verify that the frame-success

function corresponding to the specific physical-layer of interest is such that the pertinent graphs have

the desired shapes. If they don’t, this analysis needs to be adapted. Notice, however, that the analysis

in previous chapters is not affected by these restrictions.

This model is extended in chapter 9 to consider non-negligible noise, as well as the presence of

media-transmitting terminals operating at a fixed data-rate with inflexible SIR requirements. Con-

sidering non-negligible noise is important because the noise term may include out-of-cell inter-

ference, which is often substantial. Future studies may consider the issues of QoS, fairness, and

decentralized implementations, all of which are of practical importance.
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Chapter 9

Maximal Data Throughput in the

Presence of Power Limited Media

Terminals

9.1 Introduction

Modern wireless networks will accommodate simultaneous transceivers operating at very different

bit rates. Some of the transceivers may be transferring data, while others transfer media content,

such as voice, images, or video. Chapter 8 studies throughput maximization in a model relevant

to a single-cell VSG-CDMA system in which eachdata terminal can operate within a range of

bit rates, assumed continuous for tractability. This chapter discusses how to extend that model

to consider three additional items: (i) Transmission power limits, (ii) non-negligible out-of-cell

interference, and (iii) the presence of media-transmitting terminals with fixed bit rates and inflexible

SIR requirements.

Power limitations are important for obvious reasons. However, when out-of-cell interference is

negligible (system is “interference limited”), the noise term in the SIR expression may be neglected.

Then, the power allocation question reduces to finding a vector of carrier-to-interference ratios

expressing power ratios between the received power of the terminals. For example, when there are

only two terminals, power allocation reduces to finding the optimal ratio between the received power

of the two terminals. In theory, the specific power levels are arbitrary, as long as the optimal ratio

is maintained. However, when the noise term includes strong out-of-cell interference, the power

limitations of the terminals need to be taken explicitly into account. Additionally, there may be

media-transmitting terminals operating at fixed bit rates and SIR. From the stand point of the data

terminals, these media terminals appear as additional sources of “noise”, which decrease the total

data throughput.

In this chapter, data terminals continue to be delay-tolerant, with power and data rates that can

be assigned at will within specified limits, to maximize the (weighted) throughput. However, the
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media-transmitting terminals operate at fixed data rates, and have inflexible SIR requirements. The

media terminals may belong to various classes, each identified by its data-rate and SIR pair. The

data terminals may also belong to various classes, each identified by how its throughput is weighted

by the network. There are two possible weights, which admit various interpretations, including

levels of importance or priority among thedataterminals, “utility” per bit, or monetary prices. The

data rates of the data terminals, and the power levels of all terminals are allocated to maximize

the sum of the weighted throughputs of eachdata terminals, while respecting the fixed operating

conditions of the media terminals.

At the core of this analysis is a frame-success function (FSF) that gives the probability that a data

packet is received successfully in terms of the terminal’s received signal-to-interference ratio (SIR).

This function depends on many physical attributes of the system, such as the modulation technique,

the forward error detection scheme, the nature of the channel, and properties of the receiver. No

particular algebraic functional form (“equation”) is imposed on the FSF. Rather, it is assumed that

all that is knownabout this function is that its graph is a smooth S-shaped curve, as displayed in

fig. 8.1, and properties derived from this shape form the basis of this analysis. Hence, this analysis

should apply to many physical layer configurations of practical interest. Chapter 3 discusses further

this modeling approach.

Below, a relatively simple optimization model relevant to uplink data and media transmission

in one VSG-CDMA cell is built. This chapter focuses on the special case in which a power-limited

media terminal interacts with two data terminals, one of which is more “important” than the other

(the model built below can handle a somewhat more general situation than that which is analyzed).

The aim is to show that much of the analysis of chapter 8 can still be applied, with relatively

minor modifications, to the more complicated and realistic situation of this chapter. The first-order

necessary optimizing conditions (FONOC) for the dual class situation of interest are presented, and

two possible solutions to FONOC are discussed: one in which only the important data terminal

operates at the highest available data rate, and another solution in which both data terminals operate

at this rate. This analysis makes clear that the development of chapter 8 can be extended to consider

the situation of this chapter with only superficial modifications.

9.2 Problem Formulation

9.2.1 Optimization Model

max
Gi ,αi

ND

∑
i=1

βiTi(Gi ,αi) (9.1)
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subject to

s0 :=
ND

∑
i=1

αi

1+αi
< 1 (9.2)

Gi ≥G0 {1≤ i ≤ ND} (9.3)

G3 = Ḡ3 (9.4)

α3 =
γ̄3

Ḡ3
(9.5)

Pi ≤ P̄i {1≤ i ≤ N} (9.6)

In this simple model,

1. ND = 2 is the number ofdata terminals, whileNM = 1 is the number ofmediaterminals.

N = ND +NM = 3.

2. The throughput ofdataterminali is defined asRCTi(Gi ,αi), with

Ti(Gi ,αi) :=
f (Giαi)

Gi
(9.7)

3. Gi = RC/Ri , i ∈ {1, . . . ,N} is the spreading gain of terminali; i.e., the ratio of the channel’s

chip rate ,RC to the terminal’s data transmission rateRi (bits per second).G0≥ 1 is the lowest

available spreading gain (determined by the highest available data rate).

4. αi is the carrier-to-interference ratio (CIR) of the signal from terminali received at the base

station.αi is defined as,

αi :=
Pihi

∑N
j=1
j 6=i

Pjh j +σ2
=

Qi

∑N
j=1
j 6=i

Q j +σ2
(9.8)

with Pi the transmission power of terminali, hi its path gain,hiPi := Qi its received power,

andσ2 a representative of the average noise power and, possibly, out-of-cell interference. It

can be shown that, withσ2 > 0, the CIR’s must be such that∑αi/(1+ αi) < 1 (constraint

(9.2)) to ensure that a set of positive received powers exist that produce the givenαi ’s. (See

appendix B, and references [32, 1]). However, some of the resulting power levels may be too

high for some terminals. This is discussed below.

5. The productGiαi , denoted asγi , is terminali’s signal to interference (SIR) ratio. For media

terminals, a specific SIR value must be provided. For data terminal, the SIR is to be deter-

mined optimally, along with the data rates, to maximize the network’s weighted throughput.

Notice that

αi/(1+αi)≡ 1/(1+α−1
i )≡ 1/(1+Gi/γi) (9.9)
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6. Each terminal has an upper bound on its transmission power,P̄i . For convenience,hiP̄i = Q̄i is

set. For media terminals,ĥi = (1+ Ḡi/γ̄i)hi is defined as the terminal’s “effective” path gain,

because the analysis shows that the terminal with the lowestĥiP̄i has the greatest difficulty

in reaching the power level leading to its desired SIR. The greatest limitation to network

performance is imposed by the terminal in the worst situation. Because of the inflexible SIR

requirement of media terminals, it is less favorable for the cell that the terminal in the worst

situation be a media terminal, as opposed to a data terminal, and this is assumed below.

7. βi ≥ 1 is a weight, which admits various practical interpretations. In the special case discussed

in this chapter, 1= β1 ≤ β2 = β

8. There is a frame-success function (FSF),fS, which gives the probability of the correct recep-

tion of a data packet in terms of the received SIR. We assume thatall that is knownabout this

function is thatf (x) := fS(x)− fS(0) has the general properties of the generalized “S-curve”

discussed in chapter 2 (see fig. 8.1), and that it has a continuous second derivative. Because

fS(0) is very small, the difference betweenfS and f is generally negligible. Nevertheless,

this correction is made for technical reasons. To provide numerical examples, the FSF cor-

responding, under suitable assumptions, to non-coherent FSK modulation, with no FEC, and

packet size 80, which is given by equation (8.6), is used.

In the development below, an asterisk used as a superscript on a variable denotes a specific value

of the variable which satisfies certain optimality condition. Any data terminal operating at maximal

data rate is referred to as “favored” or “favorite”, and a data terminal in the high-weight class is

termed “important”, as opposed to “ordinary”.

9.2.2 Power Limitations

When constraint (9.2) holds, the resulting received power levels are such that

Qi =
σ2

1−s0

αi

1+αi
(9.10)

with

s0 :=
N

∑
i=1

αi

1+αi
≡

N

∑
i=1

1
1+Gi/γi

(9.11)

(See appendix B, and references [32, 1] ).

By observing that
αi

1+αi
+

1
1+αi

≡ 1 (9.12)

s0 can be written as

s0 :=
N

∑
i=1

αi

1+αi
≡ N−

N

∑
i=1

1
1+αi

(9.13)
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But with power limitations, some terminals may not be able to reach the power level given by eq.

(9.10). To avoid this, the feasibility condition given by inequality (9.2) is modified, as in [32], as

follows :

∀i, Qi =
σ2

1−s0

αi

αi +1
≤ hiP̄i →

∀i, s0 ≤ 1− σ2

hiP̄i

αi

αi +1
→

s0 ≤ 1− σ2

min
i
{(1+1/αi)hiP̄i}

→

s0 ≤ 1− σ2(
1+ ḠN/γ̄N

)
hNP̄N

(9.14)

Inequality 9.14 assumes that terminalN is in the “worst situation”. For example, the data terminals

may be such thathiP̄i ≥
(
1+ ḠN/γ̄N

)
hNP̄N for 1≤ i ≤ ND. This guarantees that regardless of the

optimal choice ofαi , a data terminal will not minimize(1+1/αi)hiP̄i .

9.3 Solving the special case

Below, the special case in which the cell is shared by three terminals: an “ordinary” data terminal,

whose throughput is weighted by one, an “important” data terminal whose weight isβ > 1, and

a media terminal with inflexible data rate and SIR requirements is discussed. Pessimistically, it

is assumed that the media terminal also has the most stringent power limitation (fori ∈ {1,2},
hiP̄i ≥ (1+ Ḡ3/γ̄3)h3P̄3).

9.3.1 Optimization Model Restated

max
Gi ,αi

f (G1α1)
G1

+β
f (G2α2)

G2
(9.15)

subject to

α1

1+α1
+

α2

1+α2
≤ 1− ε3 (9.16)

Gi ≥ G0 i ∈ {1,2} (9.17)

G3 = Ḡ3 (9.18)

α3 = γ̄3/Ḡ3 (9.19)

Constraint (9.16) follows from (9.14) with

ε3 =
(

1+
σ2

h3P̄3

)
1

1+ Ḡ3/γ̄3
(9.20)



111

Some reflexion indicates that constraint (9.16) should be satisfied with equality. Otherwise, the

throughput could be increased by raising eitherαi , while still satisfying constraint (9.16). However,

it is not clear a priori whether either or both of constraints (9.17) should be satisfied with equality.

9.3.2 First-Order Necessary Optimizing Conditions (FONOC)

The Lagrangian corresponding to this problem can be written as

T1(G1α1)+βT(G2α2) +

λ

(
2

∑
i=1

αi

1+αi
−1+ ε3

)
+

2

∑
i=1

µi(G0−Gi) (9.21)

The FONOC can be expressed in vector form, withγi = Giαi , as:
∂T1(G1,α1)/∂G1−µ1

β∂T2(G2,α2)/∂G2−µ2

f ′(γ1)+λ(1+α1)−2

β f ′(γ2)+λ(1+α2)−2

=


0

0

0

0

 (9.22)

with

2

∑
i=1

αi

1+αi
= 1− ε3 (9.23)

µ1(G0−G1) = 0 (9.24)

µ2(G0−G2) = 0 (9.25)

Notice that
∂Ti(Gi ,αi)

∂Gi
=

γi f ′(γi)− f (γi)
G2

i

(9.26)

and from eq. (9.13), condition (9.23) can be equivalently stated as

2

∑
i=1

1
1+αi

= 1+ ε3 (9.27)

9.3.3 Solving FONOC

9.3.3.1 A single-favorite boundary solution

The development in the preceding chapter suggests the investigation of a solution to FONOC in

which the important data terminal operates at maximal data rate (G2 = G0), with the data rate of the

ordinary terminal somewhere within its allowable range (i.e.,µ1 = 0, which allows anyG1≥G0 per

“complementary slackness” condition (9.24) ).
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From the top row of the matrix equation (9.22),γ1 f ′(γ1) = f (γ1) is obtained, which is an equa-

tion of the general form:

x f ′ (x) = f (x) (9.28)

With f an S-curve, there is a unique positive valueγ0 which satisfies equation (9.28), which can be

seen in figure (8.1) at the tangency point between the graph off and a straight line from the origin.

Therefore,

G∗
1α∗1 = γ0 (9.29)

Combining eq. (9.29) with the bottom half of the matrix equation (9.22) yields(
1+α2

1+α1

)2 f ′(γ2)
f ′(γ0)

=
1
β

(9.30)

Equation (9.27) can be written as

1+α2

1+α1
= (1+ ε3)α2 + ε3 (9.31)

Combining eqs. (9.30) and (9.31) yields, withx in place ofγ2, :(
(1+ ε3)

x
G0

+ ε3

)2 f ′(x)
f ′(γ0)

=
1
β

(9.32)

In eq. (9.32), all quantities, except forx, are presumed known. Thus, this is a single-variable equa-

tion. Notice thatG0 ≥ 2; and values ofε3greater than or equal to 1 are useless, because ifε3 ≥ 1

condition (9.22) cannot possibly be satisfied; thus,(1+ ε3)(x/G0)+ ε3 ≤ x+1. This fact is useful

in arguing that((1+ε3)(x/G0)+ε3)2 f ′(x)/ f ′(γ0) has the same “bell-shaped” graph of the function

(x+1)2 f ′(x) (fig. 8.1). This implies that, ifG0 is “too large”, the “top” of this bell may fall below

1/β, unlessβ is also “very large”. Thus, eq. (9.32) may have no solution. On the other hand, when

G0 is sufficiently small and/orβ is sufficiently large, two values ofx, on either side of the peak, will

satisfy eq. (9.32). Let the larger value,δ0, be chosen as the FONOC-solving SIR for the important

terminal. With this value,α1 is directly obtained from eq. (9.27), and by plugging theα1 value

into eq. (9.29),G1 is obtained. Thus, a complete “single-favorite” solution to FONOC is found.

However, if the resultingα∗1 is negative, or ifG∗
1 < G0, this solution is useless, and a “dual-favorite”

solution, with both data terminals operating at the highest available data rate, must be sought.

9.3.3.2 Dual-favorite Boundary Solution

In the preceding section, the SFBS, in which only the important terminal operates at the lowest

available spreading gain (highest data rate), was considered. It was pointed out that the SFBS may

fail to exist depending on the values of the parametersG0,β. In this section, a “greedy” solution to

FONOC, in which both terminals operate at the highest available data rate, is sought.
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Working with the last two rows of equation (9.22) it is established, withx = γ2 andy = γ1, that:

f ′(y)
(

1+
y

G0

)2

= β f ′(x)
(

1+
x

G0

)2

(9.33)

Eq. (9.27) can be re-written as

1
1+x/G0

+
1

1+y/G0
= 1+ ε3 (9.34)

Eqs. (9.33 and 9.34) form a system of two non-linear equations in two unknowns. This system can

be solved. Its solution is characterized through fig. 9.1.
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Figure 9.1:
With x andy respectively the SIR of the favorite and sub-favorite terminals, FONOC requires that
βh(x) = h(y), with h(t) = f ′(t)(1+ t/G0)

2. Any of the pairs(x1,y1), (x2,y2), (x1,y2), or (x2,y1)
(top) satisfies this equation, but may not be feasible. We plot all such points, which reveals an “X-
shaped” graph for eachβ. NE, NW, SW and SE are directional labels used to identify the “legs”
of the X . On the same axes, we plot the hyperbolic curves (dotted) which represent the constraint
equation (9.34). WhenG0 is low, the hyperbola mayonly intersect the SW leg of the X-curve, which
leads to a minimum.
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9.4 Discussion

The optimal power levels and data rates for data terminals that share one base station with media

terminals, which have fixed bit rates and inflexible SIR requirements, have been investigated. This

scenario is relevant to 3G CDMA. The objective is to maximize theweightedsum of thedata ter-

minal’s throughput, while honoring QoS commitments made to the media terminals. Two weights,

which admit various interpretations, including levels of importance, “utilities”, or monetary prices,

are considered. The properties of the physical layer are embodied in the frame success function

(FSF), which gives, in terms of received signal-to-interference ratio (SIR), the probability that a

data packet is correctly received. No specific functional form (“equation”) is imposed on the FSF.

It is assumed thatall that is knownabout the FSF is that its graph is “S-shaped”, and the analysis

follows from properties derived from this shape (some additional technical assumptions are needed

by certain results, as discussed in section 8.5). Therefore, many physical layer configurations of

practical interest are accommodated. Each physical layer has a preferred SIR,γ0, easily identified

in the graph of the FSF.

The main conclusion of this chapter is that the analysis in chapter 8, in which no media-

transmitting terminals are considered, and where out-of-cell interference is neglected, can be read-

ily adapted to the more general and interesting situation discussed in this chapter. The effect of

the media terminals, the out-of-cell interference (noise), and the power limitations of the terminals,

combine into a single term,ε3, that reduces the right-hand-side of the constraint on the carrier-to-

interference ratios. Thus, the expression∑αi/(1+ αi) = 1 becomes∑αi/(1+ αi) = 1− ε3. The

objective function, and other constraints remain unchanged. Theε3term appears, harmlessly, in

certain intermediate expressions, but does not alter the shapes of the key graphs describing the so-

lutions, or the fundamental conclusions of the analysis in the preceding chapter. The discussion in

section 8.5 applies to the analysis in this chapter. Particularly, the discussed technical limitations

imposed by the assumptions on the shapes of the derived graphs also apply to the development

herein.
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Chapter 10

Conclusions, Limitations and Future

Directions

10.1 Retrospective Overview

This work has presented a tractable analytical framework useful to the analysis of resource man-

agement issues in the context of wireless communications. Several application have been studied,

emphasizing centralized and decentralized resource allocations for data and media communica-

tion. Specific applications include decentralized power control making use of “mechanism design”

to achieve an efficient allocation, power and data rate assignment for maximal “weighted” cell

throughput in a 3G CDMA context, power and coding rate selection for video streaming when

video segments have been scalably encoded, and choosing the “right amount” of tolerable media

distortion when fidelity is expensive. An appendix addresses capacity questions in a 3G CDMA cel-

lular system, when base station receivers decode cooperatively (macrodiversity). While the cellular

third-generation CDMA-based architecture has often been targeted, the fundamental ideas can be

transferred to other communication scenarios.

The proposed framework has three key elements: (i) a tractable abstraction of the human sensory

system, (ii) a tractable abstraction of the physical layer of a wireless communication link, and (iii) a

fundamental technical result. In these 3 elements, a function about which all that is known is that it

is an "S-curve", plays a central role. The fundamental result involves the maximization of the ratio

f (x)/x with f an S-curve. Without imposing any particular “equation” on the considered functions,

the solution to this maximization problem is shown to always exist, be unique, and be graphically

describable. A tangent line drawn from the origin to the graph off specifies the optimal solution.

The ratio f (x)/x is also shown to be quasi-concave.

Chapters are largely self-contained, reflecting the fact that this report evolved from individual

papers devoted to specific applications. After each chapter, a discussion section is provided, out-

lining and interpreting the main lessons learned, and discussing some of the limitations. Further

comments on results, limitations, and future extensions of a more general nature are made below.
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But before, an apparent digression is incurred, by addressing the problem of optimally allocating

resources among various subprojects within a personal research program. This discussion provides

some insights into the research priorities that led to this document.

10.2 Allocation of effort among research projects

A researcher must optimally allocate a fixed amount of a resource, say time, among a selection of

a “long” list of possible projects, part of a research program. The more time he devotes to a given

paper, the greater its “utility” (“quality”, “impact”, usefulness), but the lesser the time left to pursue

other projects. What is the “right thing to do”? Finding the right answer necessitates two items

: (i) a clear specification of the relation between the utility of a paper and the amount of resource

devoted to it, and (ii) a clear criterion defining the goal of this optimization.

One would expect (hope?) that the utility of a paper is increasing with the time spent on it,

and that there is a maximum level of utility the paper arising from a given project can reach. The

development in chapter 1 suggests that a good hypothesis about the functionU(t) giving the quality

of the paper as function of the amount of resource devoted to it is that it is some S-curve. A

single S-curve may apply to all considered papers because they are all part of the same research

program, and this analysis involves a single researcher. As for the optimization criterion, it is

obvious that maximizing the total number of completed papers would lead to a large number of

“useless” papers, whereas maximizing the quality of each individual paper may result in “too few”

papers. A reasonable criterion is then to maximize the “total utility”, which is obtained by adding

up the utility of each completed paper. That is, if the amount of available resource isT andt units

are devoted to each paper, the total utility is(T/t)U(t). Hence, the researcher should allocate to

each paper the amount of resourcet∗ that maximizesU(t)/t (“quality per unit of resource”), which,

as chapter 2 shows, is uniquely determined by a tangent to the S-curveU drawn from the origin

(unlesst∗ > T in which caseT is the maximizer).

The main challenge to apply the preceding analysis in a real situation may be to estimate the

quality/time S-curve. Yet, the analysis provides a valuable and intuitive lesson: the projects have an

optimal “stopping time”, which defines an “efficient” level of “quality”. For a researcher, to spend

more “effort” on a given project to increase its “quality” beyond this level is inefficient, in the sense

that it reduces the total “impact” of the researcher’s efforts. And this intuitive lesson, to a great

extent, has guided resource allocation to the various problems analyzed in this work. Thus, none

of the chapters are “finished”, if this term is taken to mean that no interesting issues of technical or

practical importance are left to be explored.

10.3 “Unfinished” business

At the end of each chapter there are comments on the main results, and on limitations and desirable

extensions. Below there are additional comments on some high-priority items which, if successfully
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pursued in the future, would enhance this research program.

The key technical analysis involving the maximization of the ratiof (x)/x with f an S-curve

is, to the best of the author’s knowledge, rigorous and finished. However, in several parts of this

document, it becomes useful to maximize a ratio of the formh(x)/x whereh(x) = f (φ(x)); that is,

h is a composite function of an S-curve, and some other monotonic functionφ. In chapter 1, in the

development leading to the quality-rate relation,φ is a convex curve. In determining the optimal

SIR for video streaming (chapters 1 and 6)φ arises as another S-curve. In fact, it is desirable to

extend thef (x)/x result to consider the somewhat more general problem of maximizingf (x)/g(x).
This ratio can be written ash(t)/t, with t = g(x), h(t) = f (φ(t)) andφ(t) = g−1(t). In these cases,

whenφ is a “well-behaved” monotonic function, it is reasonable and intuitive to expect that the

composite functionf (φ(·)) retain the S-shape, and numerical experimentation has confirmed it.

However, this work does not provide a formal proof of this fact. That is, this work does not prove

that the composite function “starts out” convex, and smoothly transitions to convex as it approaches

a horizontal asymptote. Formally proving this fact, or specifying the general conditions under which

it is true, should be high in an agenda of future research.

Chapter 4 applies a “mechanism” available in the economics literature to achieve an efficient

decentralized power allocation among data terminals sharing a CDMA cell. Reference [43], the

original economics paper, shows the efficiency of the allocation of this mechanism in a fairly gen-

eral scenario, and outlines a simple algorithm that leads the terminals to the efficient allocation

even when they are not fully informed about the “situation” of each other. Chapter 4 partially char-

acterizes the allocation arising when this mechanism is applied to two terminals in the presence of

successive-interference cancellation (SIC), a situation under which one terminal creates interference

for the other, butnotvice-versa. More analytical and numerical work is needed to fully characterize

this situation. Additionally, the more common situation in which terminals interfere with each other

needs to be explored further.

The video streaming analysis discussed in chapters 1 and 6 assumes, for simplicity, that the

channel is “quasi-deterministic”, in the sense that the average throughput is treated as a deterministic

quantity. This simplification leads to a clear and intuitive result, involving the composite function

of two S-curves, one determined by the physical layer, and the other by the human-visual system.

A more rigorous analysis which takes explicitly into account the stochastic nature of the channel is

desirable. All the media models in chapters 5, 6 and 7 are point-to-point. Extension to a multi-user

scenario can be obtained, for example, by utilizing the game theory framework discussed in chapter

4. The key difference lies in the indices to be maximized by the terminals: bits per Joule in chapter

4, versus quality per Joule in 6.

The throughput maximization analysis of chapters 8, and 9 has a number of technical limita-

tions most of which are discussed at the end of chapter 8. Some of the most interesting extensions

are mentioned at the end of chapter 8, and include quality-of-service constraints for the data termi-

nals, “fairness” issues, considering many cells, and decentralized implementations. Additionally, in

these chapters the weights (β′s) are taken as given. Several optimization problems involving these
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coefficients could be set up. If they are interpreted as prices per bit set by the cell administrator,

determining these prices is of interest. And if they are interpreted as weights reflecting “priorities”

or “importance”, since it is advantageous to have a highβ, an obvious question is how to assign

them and why. For instance,β′s may be auctioned or otherwise sold. An additional issue is that of

the availability of the orthogonal variable-spreading-factor (OVSF) codes employed to implement

VSG-CDMA, the technology targeted by the analysis. These codes are limited, and they follow a

tree structure such that a long code has a “parent” code of a shorter length. When a code is assigned,

none of its “children” can be employed. Recent works in the literature focused on managing these

codes include [23, 38]. Chapters 8 and 9 implicitly assume that the desired codes are always avail-

able. Introducing the code-availability constraint is of practical interest, although it is a difficult

problem to approach analytically, and may lead to combinatorial difficulties.

10.4 Main contributions

The main accomplishments of this work are best determined by others. Nevertheless, it may be

appropriate to outline, from an advocative point of view, some of the ideas in this document that

should receive priority consideration by anyone seeking its main contributions.

A key analytical tool in this work has been the S-curve. As discussed in chapters 1 and 2,

this model has proved to be very useful in many fields, including ecology, biology, engineering,

and economics. It appears that all prior studies involving this family of curves rely on specific

algebraic formulas, usually associated with certain differential equations. The present work shows

that such specific formulas are neither necessary nor helpful. For instance, modeling the frame-

success function associated with a wireless communication link as a “formula-free” S-curve (an

“abstraction” of the physical layer) yields an analysis that applies to most physical layers of interest.

The S-curve can additionally serve as an abstraction of the human visual system, by capturing

the relation between the perceptual quality of a media signal and some objective parameter, such

as coding rate or distortion. This approach leads to a “quality-distortion theory”, as introduced in

chapters 1 and 7. In chapters 1 and 6, the physical and the “human” S-curves “merge” into a com-

posite function, which determines the optimal transmission power (and indirectly the coding rate)

of a video streaming system. The S-curve representing the user’s perception of quality is unchange-

able, from an engineering point of view. But the channel S-curve could be altered via manipulation

of communication items such as the modulation scheme. This raises the provocative thought that

by “matching” the channel S-curve to the one representing the human element, a communication

system tailored to the specific end user would emerge.

Thus, some of the key ideas in this document concern modeling. Modeling is in general a chal-

lenging endeavor. Typically the analyst faces a trade-off between the richness or degree of generality

of the model and its tractability. If complexity is of no concern, it is usually straightforward to build

a very general model of a complicated phenomenon, at the expense of tractability. Conversely, a

very tractable model of such a phenomenon can usually be obtained via a long list of simplify-
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ing assumptions, if one is not concerned about the generality of the predictions obtained through

that model. It is considerably more challenging to build a general model with some constraint on

tractability, or to build a tractable model with some constraint on the generality of what can be

learned through the model. It is nearly impossible to build a model of a complicated phenomenon

that both makes the analysis more tractable than that of previous models, while simultaneously gen-

eralizing the applicability of what can be learned with the new model. Yet, a reasonable argument

can be made that the models introduced in this work on the basis of the “formula-free” S-curve,

both generalize and simplify the corresponding analysis.

For instance, the frame-success function (FSF), which gives the probability that a data packet is

received successfully as a function of the terminal’s signal-to-interference ratio (SIR) at the receiver,

is determined by many attributes of the physical layer, including modulation, FEC scheme, the

nature of the channel, and antenna diversity, if any. An exact expression for this function for a

realistic model of a wireless communication situation may be prohibitively difficult or impossible

to obtain, and even if available, it may be intractable or very inconvenient, and highly dependent

on the chosen physical layer configuration. Abstracting this function as an unspecified S-curve

clearly makes the analysis much more general, since it considers a large family of physical layer

configurations, with the only significant restriction that they give rise to an S-shaped FSF (or to an

FSF that is sufficiently close to an S-curve). Since, over a limited domain, nearly all increasing

concave curves, convex curves, step functions, and ramps can be closely approximated by an S-

curve, assuming that the FSF is an S-curve is a very mild assumption. What is really surprising,

and what makes these ideas truly useful, is that this level of generality seems to come withzero

complexity cost. On the contrary, by focusing on the shape of the FSF, one is able to present clear

and specific results which, in some non-trivial situations, can be easily described by the simple

artifice of drawing a tangent to the S-curve from the origin (the “knee” of the S-curve).

The technique used to characterize the solutions to certain systems of equations should also be

considered. The idea of characterizing these solutions by focusing on the general shapes of the

functions involved may not be new, but it is certainly not common in this field. A good example of

this is found in chapter 8, in the caption of figure 8.3.

Figure 8.3, repeated for convenience as figure 10.1 in this chapter, corresponds to a situation

in which an “important” data terminal share a 3G CDMA cell with several “ordinary” terminals.

The important terminal and (possibly) several ordinary terminals are termed “favored” because they

operate at the highest available data rate. Any terminal not operating at this data rate, operate at a

specific SIR value found at the “knee” of the S-shaped graph of the frame-success function (where

a line that goes through the origin meets the S-curve). In figure 10.1,x is the SIR of the important

terminal andy the SIR of the favored ordinary terminals. In order to know the values ofx andy

that satisfy the first-order optimizing necessary conditions (FONOC), a system of two non-linear

equations needs to be solved: eqs. (8.95) and (8.98).

One could have stopped the analysis at that point, and proceeded with numerical experimen-

tation. However, this work proceeds as follows: First, it observes that eq. (8.95) is of the form
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βh(x) = h(y) (β≥ 1 is the “weight” of the throughput of the important terminal). It further observes

that the graph ofh() is a “bell curve” as displayed at the top of fig. 10.1. Then, it recognizes that for

any pair(x2,y2) satisfying this equation, in which bothx2 andy2 are to the right of the peak of the

bell, there is another pair(x1,y1) also satisfying this equation, such that bothx1 andy1 are to the left

of the peak. Some reflection indicates that the “mixed” pairs(x1,y2) and(x2,y1) also satisfy this

equation. Thus, for a givenβ, the graph of all the points that satisfy equation eq. (8.95) must have

four regions. In one region, both coordinates of an order pair are “large” (like(x2,y2)), in another

region both coordinates are “small” (like(x1,y1)), and then there are the two regions corresponding

to the “mixed” pairs, in which one coordinate is “large” and the other is “small”. What has been

described is essentially an X-shaped graph, as displayed at the bottom of fig. 10.1 (increasingβ has

the effect of “pulling apart” the X, as shown).

A similar analysis leads to the conclusion that the graph corresponding to eq. (8.98) is a U-curve

(except when all terminals operate at the highest data rate) as shown fig. 10.1. Generally, there will

be four intersections between the U and the X, except that under certain choice of parameters the U

may lie above the X and no solutions exist. With all terminals at the highest available data rate the

U “deforms” into an “L” (a hyperbola) and, under certain choice of parameters, may only intersect

the SW leg of the X, in which bothx andy are “small”, which would lead to a (local) minimizer, as

opposed to a maximizer.

Through this geometric exercise, a great deal is learned about the optimizing SIR values (which

will generally be in the NE “arm” of the X). Because this analysis only relies on the general shapes

of the function involved (X, U, L, “bell”, etc), which are derived from the original S-curve, one can

be confident that what has been learned will remain valid for most reasonable choices of parameter,

as long as the physical layer is such that its frame-success function is an S-curve, a very mild

restriction.

While a great deal of effort has been invested in achieving the technical correctness of this

document, it would be adventurous to issue any guaranty in this regard. In fact, given the the high

technical content of this work, and its depth, breadth, and length, it would be rather surprising if no

significant errors are ever found. Yet, there are some basic ideas and techniques in this document

that appear to be fundamentally sound, and more importantly, fundamentally useful, regardless of

the technical correctness of any specific mathematical expression. While CDMA, the technology of

third-generation wireless communication system is often targeted throughout this work, the basic

abstractions and techniques presented here are largely technology-neutral. Thus, it is conceivable

that aspects of this work will remain useful beyond the lifetimes of the targeted technology, and of

those involved in its writing.
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Appendix A

Some Basic Results on Concavity

Much of this as well as other relevant material can be found in reference [2], in particular in chapter

III. The presentation here follows that in the mathematical appendix of reference [21]. However,

the material of subsection (A.2.2) is not found in those references, and is developed in full here.

A.1 Concave and convex functions

Consider a functionf : I → R , defined on an intervalI ⊂ℜ.

Definition: The functionf is said to be concave if,∀x1,x2 ∈ I andα ∈ (0,1),

f (αx1 +(1−α)x2)≥ α f (x1)+(1−α) f (x2) (A.1)

The functionf is said to bestrictly concave if the above inequality holds strictly wheneverx1 6= x2.

Definition: The functionf is said to be (strictly)convexif the function− f is (strictly) concave.

A.2 Properties of continuously differentiable concave and convex func-

tions

A.2.1 Tangent line Theorem

The continuously differentiable functionf : I → R , defined on an intervalI ⊂ℜ , is concave if and

only if, ∀x1,x2 ∈ I ,

f (x2)≤ f (x1)+ f ′(x1) · (x2−x1) (A.2)

This function isstrictly concave if and only if the above inequality holds strictly∀(x1 6= x2) ∈ I .

The functionf is convex if and only if,∀x1,x2 ∈ I ,

f (x2)≥ f (x1)+ f ′(x1) · (x2−x1) (A.3)

This function isstrictly convex if and only if the above inequality holds strictly∀(x1 6= x2) ∈ I .
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A.2.2 The Monotonicity of y-intercepts
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Figure A.1: Increasing Y intercepts

Corollary: Let f : I → R denote a continuously differentiableconcavefunction, defined on an

intervalI ⊂ℜ. Let x0, x1, x2 be elements ofI such thatx0 < x1 < x2. Then,

f (x2)+(x0−x2) f ′(x2)≥ f (x1)+(x0−x1) f ′(x1) (A.4)

If f is strictly concave the above inequality holds strictly.

Proof:

See figure (A.1). In this development,i ∈ {1,2}.

First notice thatgi(x) = f (xi)+ f ′(xi)(x−xi) denotes the equation of a line tangent at the point

(xi ,yi) (yi
.= f (xi)) to the the curve describing the graph off .

Let bi
.= f (xi)+(x0−xi) f ′(xi).

Thus,bi is the “height” of tangent lineLi at the abscissax0, or its “intercept” with a vertical line

drawn atx0. Hence, inequality (A.4) can be restated asb2 > b1. In the special casex0 = 0, bi

become the “y-intercept” or ordinate at the origin of the lineLi .
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Let ∆1
.= g2(x1)−y1 and∆2

.= g1(x2)−y2.

Geometrically,∆1 is the length of the segmentQ1R1, which equals the difference between the

“height” of the tangentL2 and the value of the functionf , both measured at the abscissax1. ∆2 has

an analogous interpretation.

Observe that the points(x0,b1), Q1 andR2 are all in the lineL1.

Likewise,(x0,b2), R1 andQ2 are all in the lineL2.

Therefore:
y1−b1

x1−x0
=

y2 +∆2−b1

x2−x0
⇒

b1 =
(x2−x0)y1− (x1−x0)(y2 +∆2)

x2−x1
(A.5)

y2−b2

x2−x0
=

y1 +∆1−b2

x1−x0
⇒

b2 =
(x2−x0)(y1 +∆1)− (x1−x0)y2

x2−x1
(A.6)

Consequently:

b2−b1 =
(x2−x0)∆1 +(x1−x0)∆2

x2−x1
(A.7)

By construction,x0 < x1 < x2.

By inequality (A.2), both∆1 and∆2 are non-negative, and both are positive iff is strictly concave.

Therefore, the right hand side of equation (A.7) is non-negative, and it is positive, iff is strictly

concave.

That is, if f is concave,b2 ≥ b1, andb2 > b1if f is strictly concave.

Q.E.D.

Given the fact that− f is concave wheneverf is convex (see section(A.1)), the following result is

immediate:

Corollary: Let f : I → Rdenote a continuously differentiableconvexfunction, defined on an

intervalI ⊂ℜ. Let x0, x1, x2 be elements ofI such thatx0 < x1 < x2. Then,

f (x2)+(x0−x2) f ′(x2)≤ f (x1)+(x0−x1) f ′(x1) (A.8)

If f is strictly convex the above inequality holds strictly.
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Appendix B

Power, Ratios, and Capacity

B.1 From power ratios to power levels : closed-form solution

In certain situations of interest concerning wireless communication networks, rather than dealing

with power levels directly, one may wish to choose directly the quantities representing the ratios of

each transceiver’s power level to the sum of the other transceivers’ power levels (plus noise power if

applicable). Here we discuss which constraints, besides non-negativity, need to be applied to these

power ratios to ensure that they correspond to feasible power levels, and provide a closed-form

relation giving the power vector in terms of the ratios.

Specifically, letαi be defined as :

αi =
Pihi

∑N
j=1
j 6=i

Pjh j +σ2
=

Qi

∑N
j=1
j 6=i

Q j +σ2
(B.1)

In this expression,Pi is associated with the transmit power of transceiveri, hi corresponds to the

path gain from transceiveri to the base station, andσ2 represents the noise power in the base

station receiver.Qi = Pihi is then the received power at the base station in the signal transmitted by

transceiveri. N represents the number of active users.

Eachαi can be called a transceiver’s carrier to interference ratio (CIR). The corresponding signal

to interference and noise ratio, SINR is defined as the productGiαi , with Gi the corresponding

“processing gain” or ratio of the channel’s “chip rate” to the transceiver’s transmission rate.

Notice that implicit in the above formulation is the assumption that a single base station is of

interest. Considering multiple base stations complicates the notation, without casting any new light

on the problem. Hence, a single base station is considered.

The defining equations for theαi ’s (see equation (B.1) above) yield a linear system of equations

(see eq. (B.2) below). Theα j ’s correspond to feasible power ratios, whenever this system can be

solved for physically meaningfulQ j ’s.

One could attack this issue via elementary algebra. However, a matrix algebra approach, cen-

tered on the concepts of eigenvalues and eigenvector, is preferred, because it provides more valuable
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insights into the structure of the problem. This is not surprising. Eigenvalues and eigenvectors have

played a prominent role in the development of power control theory. For instance, see reference [7],

which is an influential work.

B.1.1 Problem formulation

The defining equations for theαi ’s (see equation (B.1) above) yield a system of equations which

can be expressed in matrix form as:


1 −α1 −α1 · · · −α1

−α2 1 −α2 · · · −α2
...

...
...

...
...

−αN −αN −αN · · · 1




Q1

Q2
...

QN

=


α1

α2
...

αN

σ2 (B.2)

However, it will prove convenient to divide both sides of each one of the original equations by 1+α j

where the index “j” corresponds to the oneα j which appears in the corresponding equation. Thus,

for example, the equation corresponding to the second row becomes:

− α2

1+α2
Q1 +

1
1+α2

Q2−
α2

1+α2
Q3−·· ·−

α2

1+α2
QN =

α2

1+α2
σ2 (B.3)

Now, for notational convenience, we define:

ak =
αk

1+αk
(B.4)

It will prove useful to observe the following trivial algebraic identity:

ak +
1

1+αk
=

αk

1+αk
+

1
1+αk

= 1 ⇒ 1
1+αk

= 1−ak (B.5)

Taking into account (B.4) and (B.5), equation (B.3) can be re-written as

−a2Q1 +(1−a2)Q2−a2Q3−·· ·−a2QN = a2σ2

After treating all the equations in the system of interest analogously, we can express the system of

equations (B.2) as:




1 0 0 · · · 0

0 1 0 · · · 0
...

...
...

...
...

0 0 0 · · · 1

−


a1 a1 a1 · · · a1

a2 a2 a2 · · · a2
...

...
...

...
...

aN aN aN · · · aN





Q1

Q2
...

QN

=


a1

a2
...

aN

σ2 (B.6)

Notice that this matrix equation can be expressed as
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(I −A)~Q =~aσ2

Above, I is theN×N identity matrix, andA is a strictly positive matrix with each of its columns

equal to the vector~a.

B.1.2 Feasibility Condition

According to non-negative matrix theory, the above system has a non-negative solution whenever

the Perron eigenvalue ofA is less than 1. See [34, Section 2.1]. Hence, we need to find the largest

eigenvalue ofA.

By definition,λ,~v are an eigenvalue/eigenvector pair for matrixA if ~v 6=~0 and they satisfy:

A~v = λ~v (B.7)

But because of the special structure ofA it can be easily verified that, for any vector~x,

A~x =

(
N

∑
j=1

x j

)
~a (B.8)

Comparing eqs. (B.7) and (B.8), it becomes apparent that in order for the scalar/ vector pairλ,~v to

satisfy eq. (B.7), it must be thatλ = ∑N
j=1x j and, either of the following two conditions hold:

i) If ∑N
j=1x j 6= 0,~x must be a multiple of~a (so that eq. (B.8) is satisfied).

ii) ~x is a non-zero vector such that∑N
j=1x j = 0 (which would also satisfy eq. (B.8)).

Notice that, in general, inRN, one can findN−1 linearly independent vectors such that∑N
j=1x j =

0

This development completely specifies the eigenvalues and characterizes the eigenvectors ofA.

There are only two distinct eigenvalues :λ1 = s
.= ∑N

j=1a j andλ2 = 0, the latter of which has

multiplicity N−1. By definition,s is the Perron eigenvalue ofA.

The eigenvector corresponding tos can be taken to be precisely~a.

In conclusion, the set of values denoted asα′js correspond to feasible power ratios whenever

∑N
j=1a j < 1.

B.1.3 Explicit Solution

One can reach the above conclusion without invoking non-negative matrix theory, by solving ex-

plicitly the system of equations of interest:(I −A)~Q =~aσ2. This can be done with the information

obtained through the preceding development. One has to consider separately two cases:σ > 0 and

σ = 0.
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The caseσ > 0

As discussed above, the right-hand side of the above equation is an eigenvector for the matrix

A corresponding to the eigenvalues
.= ∑N

j=1a j . This suggests that the relationship between the

eigenvalues/eigenvectors pairs ofA and those of the matrixI −A be investigated.

In fact, if~v is and eigenvector forA corresponding to the eigenvalueλ, then

(I −A)~v =~v−λ~v = (1−λ)~v

Thus, 1−λ and the same~v are also an eigenvalue/eigenvector pair forI −A !

In particular,~a is also an eigenvector forI −A with eigenvalue 1−s, that is,

(I −A)~a = (1−s)~a

From this it follows that, ifs 6= 1, ~Q = (σ2/(1−s))~a (which is positive whenever~a is, ands< 1) is

the solution of(I −A)~Q =~aσ2. That is, each component of the power vector must satisfy

σ2

1−s
ak (B.9)

with s= ∑N
j=1a j . This expression is well-defined and physically meaningful whenevers< 1.

The caseσ = 0

If noise is negligible, which impliesσ = 0, then in order for the system(I −A)~Q =~0 to have a

non-trivial solution, the determinant of the matrixI −A must be zero. This can only happen if

1− s, which is the only eigenvalue ofI −A which is different from one (see preceding discussion

about the relationship between the eigenvalues ofA and those ofI −A), equals zero; that is, if

s= ∑N
j=1a j = 1.

In this case the system has infinitely many solutions. It can be verified that any power vector~Q

proportional to~a is a solution to(I −A)~Q =~0.

In fact, this has already been established.sand~ahave been shown to be and eigenvalue/eigenvector

pair for A. That is,A~a = s~a. Therefore, whens= 1, (I −A)~a = ~a−~a =~0, which confirms that
~Q =~a is indeed a solution of(I −A)~Q =~0, as is any~Q ∝~a.

B.2 Interpretations and Conclusion

Above, the conditions under which each one of a set of positive numbers corresponds to a transceiver’s

carrier to interference ratio, CIR, have been given. These conditions have been derived by studying

the solution of a system of linear equations engendered by the CIR definition (see eq. (B.1)). In fact,

a closed-form expression yielding the solution has been given (see eq. (B.9)). The interpretation of

these results casts some light on the structure of power control problems, and has some implications
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for the modeling of these problems.

Much of the preceding development is centered on some new variables. These variables may, at

first glance, seem devoid of physical significance. However, a more deliberate look at them reveals

that they, and the conditions given in terms of them, can be interpreted in physically significant

manner.

Recall that theak’s were introduced in eq. (B.4) as

ak =
αk

1+αk

where theαk’s were defined in eq. (B.1) as the received CIR’s of certain signals. This means that if

the originalαk’s are indeed physically meaningful, theak’s can be expressed in terms of the received

power vector as follows:

ak =
αk

1+αk
=

Qk/Ik
1+Qk/Ik

=
Qk

Ik +Qk
=

Qk

QC
(B.10)

Above,Ik is the total interfering power, including noise, experienced by userk, i.e, Ik = ∑N
j=1
j 6=k

Q j +

σ2, andQC is the total received power, including noise. Thus, ourak’s represent the respective

signal’s fractional “share” of the total power being received (including noise), or the signal-to-

channel ratio, SCR, a physically meaningful quantity.

In fact,ak can be viewed as a rough “measure” of the channel’s “quality” as experienced by user

k. If ak = 1, userk’s signal power is the only one being received (nor even noise interferes with this

signal). This represent an ideal situation, in which any non-negligible amount of power received in

this signal will result in error-free transmission. At the other extreme,ak = 0 indicates the worst

possible situation from the perspective of userk.

Along these lines, the sums= ∑N
j=1a j is seen to satisfy

s=
N

∑
j=1

a j =
N

∑
j=1

Q j

QC
=

∑N
j=1Q j

QC
≡

∑N
j=1Q j

∑N
j=1Q j +σ2

(B.11)

Now, the conditions < 1 is discovered to make plenty of sense. If the originalαk’s are indeed

physically meaningful, as long asσ2 > 0, the numerator in the preceding expression, eq. (B.11), is

definitively less than the denominator, for whichs must indeed be less than 1. And ifσ2 = 0, s= 1

must hold.

From eq. (B.11), it follows that 1− s, an expression appearing in eq. (B.9), which gives the

power vector in terms of the ratios, represents the noise’s fractional “share” of the total received

power,σ2/QC. This shows that when the feasibility conditions are satisfied, eq. (B.9) is an identity.

That is:
σ2

1−s
ak =

σ2

(σ2/QC)
Qk

QC
≡Qk

Finally, this analysis has some implications for the modeling of the phenomenon of interest. A
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critical step in building a mathematical model is to choose an appropriate set of variables. It is well

known that some variables help to uncover the underlying structure of the phenomenon of interest

and facilitate its analysis, while a different variable choice may hide important interrelations, and

complicate the analysis. For example, in the analysis of linear systems, it is often possible to “di-

agonalize” a matrix representing a linear transformation through a change of coordinates involving

the matrix eigenvectors. This new representation can be quite useful in simplifying the analysis.

The development in this note hints that the signal-to-channel ratio (SCR), defined as the ratio of

a received signal power to the total received power in the channel (including noise), a quantity with

perfectly clear physical significance, may be the “natural” ratio in the analysis of power-control

and related phenomena, as opposed to the SINR, which is the ratio “traditionally” favored in the

literature.

Both the CIR and the SCR hold the same “information”, and the conversion of one to the other is

straightforward. However, a candidate SCR vector can be tested for feasibility simply by checking

whether the sum of its components is less than 1 (or, if noise is negligible, whether this sum equals

one). Likewise, the power vector yielding a desired, feasible SCR vector is directly proportional to

the SCR vector, with the constant of proportionality being a simple, physically meaningful function

of the sum of the desired SCR’s. And if noise is negligible, then the power vector can be taken to

be exactly the same as the SCR vector. Hence, the SCR can be a considerably more convenient

variable choice than the CIR.

Of course, there is a reason why the CIR has been favored. In the relatively simple AWGN

channel, the bit error probability can be shown to be dependent on the signal-to-noise ratio. But

the typical wireless channel is considerably more complicated than an AWGN channel. Model-

ing its bit error probability as determined by the SINR’s is a high-level approximation. A similar

approximation in terms of the SCR’s could be equally justified (or unjustified).
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Appendix C

Allocating Limited Power with Elastic

Signal-to-Interference Targets

C.1 Introduction

The signal-to-interference ratio (SIR) is a fundamental quality-of-service (QoS) index in the oper-

ation of CDMA networks. In many situations, a terminal enters the network intending to perform

certain task. This task may require that the frame-error rate be kept under specified limits, and these

limits ultimately translates into minimum SIR requirement. Likewise, a terminal may be able to

operate at various levels of SIR, but there may be a level which is optimal for the terminal (e.g,

this level may maximize the terminal’s “utility”). Thus, when a terminal expresses an interest in

joining the network, a question that immediately arises is whether the network, under acting condi-

tions, can support the SIR desired/required by the new terminal, without failing to honor previous

commitments made to other active terminals. Answering this question is an important resource

management issue: admission. This situation is particularly interesting in the context of variable

spreading gain (VSG) CDMA, a technique part of 3G standards, in which terminals with dissimilar

data rates, share a common “chip rate”, but operate with non-identical spreading gains.

The SIR is determined by the power levels of all active terminals, plus random noise, which may

actually represent out-of-cell interference. This problem ultimately comes down to determining

whether a vector of SIR’s is such that there is a “matching” vector of power levels, each meeting

appropriate constraints, which produces the desired/required SIR for each terminal. The answer to

this question is known, even in the VSG-CDMA context. Each desired SIR,γi , can be supported,

if they are such that∑i 1/Ĝi < 1, with Ĝi = 1+Gi/γi , andGi the respective spreading gain [1, 32].

However, in this case there is also a specific power levelQi with which the signal of terminali must

be received. With limited transmission power, a poorly situated terminal may be unable to reach its

respectiveQi even while operating at maximal power.

If SIR targets are inflexible, when one or more terminals cannot reach the power level necessary

for them to achieve their required SIR, at least one terminal must be refused service or turned off.
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The problem, however, becomes more interesting if there are “flexible” terminals, each willing and

able to operate below its desired SIR. For example, for a given physical layer, there is an SIR value

that maximizes the bits per Joule performance of a data transmitting terminal. But the terminal

can also operate at a lower SIR, at the expense of energy efficiency. Likewise, media transmitting

terminals could operate at a lower than desired SIR, at the expense of higher media distortion,

due to a higher FER. In cases like these, the procedure to be followed to allocate power when

some terminals cannot reach the appropriate power level needs to be clarified. This is done in the

remainder of this note.

The literature on power control and capacity of CDMA networks is plentiful. Reference [1] is

a recent work which discusses many previous publications on this issue, and [10] is an authorita-

tive recent survey. However, to our knowledge, previous works do not address our problem, namely,

what to do when terminals cannot reach their desired SIRs but some terminals requirements are flex-

ible. For example, [32] considers maximal received power constraints by imposing conditions on

the SIR such that the matching powers are all less than the respective maximal received power. But

these conditions can substantially reduce the capacity of the network, when a terminal is severely

power limited (for example, because it is in a very bad location), and it is certainly unnecessary if

this terminal’s SIR requirement is flexible. On the other hand, [30] does touch on our problem, in

the context of a power control “game” among data-transmitting terminals. It is that analysis which

we clarify and extend in this work.

C.2 Problem Statement

N terminals wish to share a CDMA cell. Out-of-cell interference is included as part of the noise

term σ2. It is immaterial whether or not some of these terminals are not yet active and want to

join those already active. Terminali is characterized by a path loss coefficienthi to the base station

(BS), an upper bound on its transmission power,P̄i , a data transmission rateRi (which determines a

spreading gainGi = Rc/Ri , with Rc the channel’s “chip rate”), and its preferences on the SIR space.

These preferences are such that it wants the largest feasible SIR in the interval[γ
i
,γi ]. Notice that,

when energy is limited, a higher SIR is only better up to a point, even in a single-user channel.

For instance, given a physical layer, a quasi-concave (“bell shaped”) function of the SIR gives the

number of bits that a data transmitting terminal can successfully transfer per unit of energy. This

means that there is a specific SIR which maximizes bits per Joule. If a terminal operates with SIR

that islower or higherthan the optimal value, its bits per Joule efficiency suffers [30].

For convenience, we sethiP̄i = Q̄i , γi/Gi = αi , and 1+ Gi/γi = Ĝi . We call αi the carrier

to interference ratio (CIR) (the SIR is the product of the CIR by the respective spreading gain),

andĜi the “effective spreading gain” (unity plus spreading gain per unit of desired SIR). Clearly,

αi = 1/(Ĝi −1).

We defineĥi = Ĝihi as the terminal’s “effective” path gain, because the analysis shows that the

terminal with the lowest̂hiP̄i has the greatest difficulty to reach the power level leading to its desired
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SIR. For expositional convenience, we assume thatĥ1P̄1 ≥ ĥ2P̄2 ≥ ·· · ≥ ĥNP̄N. Thus, terminal 1 is

in the “best situation”, and terminalN in the “worst situation”.

We seek a non-negative vector specifying a received power level for each terminal. This vector

must be “optimal” in some reasonable sense. We assume that each terminal values energy, and does

not want to spend more energy than it needs to in order to maximize its preferences on the SIR

space.

C.3 Solution

C.3.1 When all terminals are power sufficient

Evidently, if there is one feasible power allocation such that, for eachi, the SIR of terminali is

its preferred value,γi , then we would choose such allocation. Thus, our first task is to investigate

conditions under which such allocation is feasible. That is, withQi = hiPi denoting thereceived

power from terminali, we ask under which conditions a system ofN equations of the form:

Qi

∑N
j=1
j 6=i

Q j +σ2
= αi ≡

1

Ĝi −1
(C.1)

has a non-negative solution, and if so what is it in closed form?

The answer is found in [32], and under slightly more general conditions in [1], and the complete

development can be found in appendix B. Equation (C.1) leads to a system of equations:


1 −α1 · · · −α1

−α2 1 · · · −α2
...

...
...

...

−αN −αN · · · 1




Q1

Q2
...

QN

=


α1

α2
...

αN

σ2 (C.2)

One can show that if the condition

s0 :=
N

∑
k=1

αk

1+αk
≡

N

∑
k=1

1

Ĝk
< 1 (C.3)

is satisfied, the system (C.2) has a unique solution, in which each component of the received power

vector is given by:

Q∗
k =

σ2

1−s0

αk

1+αk
≡ σ2

1−s0

1

Ĝk
(C.4)

Evidently, if∀i Ĝi = Ĝ, then condition (C.3) and equation (C.4) reduce to, respectively, :

s0 =
N

Ĝ
< 1 (C.5)
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Q∗
k =

σ2

Ĝ−N
(C.6)

C.3.2 Some terminals lack sufficient power

C.3.2.1 General strategy

If condition (C.3) is satisfied, and each terminal can reach (at the receiver) the power level given by

equation (C.4), then each can achieve its desired SIR by setting its transmit power level atQk/hk.

But, evidently, one or more terminals may not be able to reach such level, because of power limita-

tions. Our analysis will show that the terminal with the lowestĥiP̄i (with ĥi = Ĝihi) has the greatest

difficulty in reaching the power level leading to its desired SIR. We say that this terminal is in the

“worst situation”. We have assumed, for expositional convenience, thatĥ1P̄1 ≥ ĥ2P̄2 ≥ ·· · ≥ ĥNP̄N.

Thus, terminalN is in the “worst situation”, followed be terminalN−1, and so on down to terminal

1, which is in the “best situation”.

After calculating the vector of received power that produces the vector of desired SIRs for all

terminals,infeasiblepower levels may result (negative, or positive but too high for some terminals).

In this case, we set the terminal in the worst situation, i.e., terminalN, to operate at its maximal

power. Then, we re-calculate the power vector necessary for theother terminals to achieve their

desired SIRs, under this new operating condition. If this new vector (of orderN−1) is feasible, we

stop; otherwise we set the terminal in the second worst situation (terminalN−1) to alsooperate at

maximal power, and calculate the new vector (of orderN−2) leading to the desired SIR of the other

terminals. If this new vector is feasible, we stop; otherwise, we continue recursively. We end with

M terminals operating at maximal power, and each of the remaining ones operating at the power

level which allows it to achieve its desired SIR.

C.3.2.2 Capacity cost of serving a terminal in a bad situation

One may be tempted to rule out SIR vectors which demand power levels that are “too high” for any

one of the terminals. One could accomplish this by modifying, as in [32], the feasibility condition

given by inequality (C.3) as follows :

∀k,
σ2

1−s0

1

Ĝk
≤ hkP̄k → s0 ≤ 1− σ2

ĜkhkP̄k
→

N

∑
j=1

1

Ĝ j
≤ 1− σ2

min
k
{ĜkhkP̄k}

(C.7)

Without power limitations, the capacity of the cell is determined by inequality (C.3). Thus, we

can think that, when each terminal is powerunlimited, the cell capacity is unity. But with power

limits, the feasibility inequality becomes (C.7). Thus,(ĜkhkP̄k/σ2)−1 can be interpreted as the

amount of “capacity” which has to be sacrificed in order to accommodate the power limitation of

the terminal in the least favorable situation. The sacrificed capacity isincreasingin the terminal’s
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SIR, butdecreasingin its spreading and path gains, and totally vanishes if its transmission power

is unlimited. Notice also that̂GkhkP̄k can be written aŝhkP̄k. Thus,ĥk = Ĝkhk can be called the

“effective” path gain. When all terminals have the same transmit power limit,ĥk determines, which

terminal is in the “worst situation”. For instance, a terminal in a bad location (lowhi) may do

reasonable well if its spreading gain is “large” with respect to its desired SIR .

ĜkhkP̄k could be very small for some terminal, which would happen, for example, when a ter-

minal operating at a high data rate (lowGk) and demanding a high SIR is very far from the BS (low

hk). In such case, the right-hand-side of inequality (C.7) could also be very small, or even nega-

tive, which would substantially reduce or totally vanish the set of SIR vectors that can be supported

(“capacity region”).

C.3.2.3 One terminal at maximal power

For expositional convenience, we have already assumed that terminalN minimizes the RHS of

inequality (C.7). First, notice that even if more than one terminal failed to reach the level given

by equation (C.4), we should start settingonly terminalN, at maximal power. By hypothesis, the

maximal received power from this terminal is less than that given by equation (C.4). Thus, other

terminals will experience less interference in this scenario, than they would have, if terminalN

had been able to reach the specified power level. Therefore, it is possible that a terminal which

previously could not reach the power level necessitated by its desired SIR, may be able to do so

now.

In this scenario, the received power from terminalN, QN, is presumed fixed athNP̄N = Q̄N,

while others need to be found to satisfy :

Qi

∑N−1
j=1
j 6=i

Q j +Σ2
1

=
1

Ĝi
≡ αi (C.8)

whereΣ2
1 := Q̄N +σ2 .

Evidently, equation (C.8) leads to a system of equations analogous to (C.2), except that it is of

order N-1, andΣ2
1 replacesσ2. From the development leading to condition (C.3), the feasibility

condition for the existence of a non-negative solution of this new system is:

s1 :=
N−1

∑
k=1

1

Ĝk
< 1 (C.9)

Likewise, if inequality (C.9) is satisfied, a unique solution exists, in which the first N-1 components

of the received power vector satisfy:

Q∗
k =

Q̄N +σ2

1−s1

1

Ĝk
(C.10)

Notice that if inequality (C.3) is satisfied, so is inequality (C.9). But the converse is obviously not
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true. This suggests that we can apply the current procedure, even when inequality (C.3) has failed,

at the outset.

C.3.2.4 Several terminals maxed out

After proceeding as in section C.3.2.3, we may find that terminalN− 1, which is in the second

worst situation, cannot reach the power level given by equation (C.10). In this case, as discussed in

section C.3.2.1, we would set both terminalsN andN−1 to operate at maximal power, and check

whether each of the remaining terminals is able to reach the power level leading to its desired SIR.

If this is not the case, we would then set terminalsN−2 throughN to operate at maximal power,

and verify if each of the other terminals has enough power to achieve its desired SIR. And so on.

The verification step, withM terminals operating at maximal power proceeds as follows. The

received power fori = N−M + 1, . . . , N are presumed fixed athiP̄i = Q̄i , while others need to be

found to satisfy :
Qi

∑N−M
j=1
j 6=i

Q j +Σ2
M

=
1

Ĝi
≡ αi (C.11)

with, Σ2
M := σ2 +

N

∑
i=N−M+1

Q̄i

Evidently, equation (C.11) leads to a system of equations analogous to (C.2), except that it is of

order N-M, andΣ2
M replacesσ2. From the development leading to condition (C.3), the feasibility

condition for the existence of a non-negative solution of this new system is:

sM :=
N−M

∑
k=1

1

Ĝk
< 1 (C.12)

If inequality (C.12) is satisfied, a unique solution exists, in which the first N-M components of the

received power vector satisfy:

Q∗
k =

Σ2
M

1−sM

1

Ĝk
(C.13)

If ∀i, Ĝi = Ĝ, the feasibility condition (C.12) and equation (C.13) become, respectively:

sM =
N−M

Ĝ
< 1 (C.14)

Q∗
k =

Σ2
M

Ĝ−N+M
(C.15)

C.4 Discussion

In situations of practical interest involving data or media transmission in 3G wireless networks, each

terminal may desire a certain optimal SIR, but it may be able and willing to function at sub-optimal
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SIR levels. We have presented an analytical procedure to allocate power when some “flexible”

terminals cannot reach the power level leading to their optimal SIR, because of power limits and

poor location, for example. The procedure is analytical, and the necessary closed-form expressions

are provided. In general, we end withM terminals operating at maximal power, and the remaining

ones achieving their desired SIRs.M can be as low as zero (each terminal achieves its optimal SIR),

or as high asN (no terminal achieves its optimal SIR).

If each of theM maxed out terminals achieves an SIR which is in its acceptable range, the

obtained power allocation is perfectly reasonable. It allows each ofN−M terminals to operate at

its optimal SIR (“satisfied” terminals), while giving each maxed-out terminal an acceptable SIR.

Furthermore, this allocation is an “equilibrium”, in the sense that no terminal would be better off

by unilaterally changing its transmission power. This is clear for the satisfied terminals, because

any such terminal, byunilaterally changing its power, would move its SIR away from its preferred

level. And a maxed out terminal would like to butcannotincrease its power level to raise its SIR

closer to its desired value.

On the other hand, if some of the maxed out terminals end up with SIRs that are “too low”, it is

not clear what should be done. Lowering the SIRs of some/all of the satisfied terminals just enough

so that, if possible, the terminal in the worst situation can reach its minimum acceptable SIR seems

reasonable, provided that the new SIR for each of the terminals is still acceptable. On the other hand,

one could argue that the satisfied terminals should not be sacrificed for no fault of their own, to help

poorly situated terminals. These terminals could possibly wait for a better channel condition (due

to their movement, for example), without disrupting the satisfaction of better situated terminals.

If a decision is made to turn off maxed out terminals whose SIR (in the final round) are “too

low”, this must be done sequentially, starting with the terminal in the worst situation. Once this

terminal is powered off, the power vector needs to be recalculated, because, with less interference,

each terminal needs less received power to achieve a given SIR; thus, the terminal in the second

worst situation may now be able to reach its desired SIR, or at least an acceptable SIR, if it could

not do so before. If this terminal’s SIR is still unacceptable, then it should be turned off also, and

the power vector recalculated once again. And so on.

Sacrificing the better situated terminals to help the poorly situated ones is, essentially, a “Robin

Hood” scheme (to steal from the rich to help the poor). The appropriateness and fairness of such

scheme is more a philosophical issue than an engineering one.
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Appendix D

The Capacity of CDMA systems with

Multiple Antennas at the Receiver

As described by Hanly [9], macrodiversity is a scheme in which the cellular structure of a wireless

communication network is removed and “each mobile...(is)...jointly decoded by all receivers in the

network”. Alternatively, one can think of a single-cell network equipped with several receiving

antennas, possibly distributed in various locations throughout the cell. Hanly [9] shows that this

scheme can significantly increase the capacity of a CDMA wireless communication network.

The macrodiversity capacity results provided by [9] assume that the transmission power of each

transmitter contributes to its own interference. This approximation is generally appropriate for a

CDMA system in which each transmitter’s spreading gain is “large”, which, normally means that

its (pre-spread) “carrier to interference ratio” is “small”.

But modern wireless networks are expected to accommodate simultaneous transceivers operat-

ing at a wide range of data rates. “Variable spreading gain" (VSG) CDMA is one of the technolo-

gies through which new standards accommodate such multi-rate traffic (see for instance, Nanda,

et al.[24]). In a VSG-CDMA system (see I and Sabnani[11]), each transceiver’s spreading gain

is determined as the ratio of the common chip rate to the transceiver’s data rate. Thus, high data

rate sources generally operate with “low” spreading gains, and “high” carrier-to-interference ratios.

Under these conditions, the “self-interference” approximation may not be appropriate.

Explicitly considering transmission power limits, and without recurring to the “self-interference”

approximation, this note derives results determining the capacity region of a CDMA cellular net-

work under macrodiversity. The “complexity” of applying the new results is comparable to that

of the approximated ones. The analysis is grounded on the Brouwer’s fixed point theorem and the

Banach’s contraction mapping principle, two well established mathematical results.

Below, the basic macrodiversity relation is presented, first in the traditional form, and subse-

quently in matrix form, in terms of convenient new variables. Then, it is shown that the basic

macrodiversity capacity question is equivalent to determining whether certain meaningful function

has a fixed point. Subsequently, conditions are identified under which the desired solution ex-
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ists. Moreover, further conditions are explored under which this solution is unique, and can be

determined through an intuitive, well-behaved algorithm. Finally, the results are interpreted and

discussed. Space limitations preclude a comprehensive comparison between the new results and

those previously available. Nevertheless, some brief contrasting comments are made, highlighting

the fact that the new results are less conservative, which can make a significant difference in the

throughput of a 3G system.

A mathematical appendix introduces the essential mathematical terminology, and some techni-

cal results.

D.1 The macro-diversity framework

D.1.1 Basic relation

Under macro-diversity, the cellular structure is removed and each transmitter is jointly decoded by

all “receivers” (base stations, or antennas in a single cell). Hanly [9] argues that, in this situation, a

relevant QoS index for terminali is the product of its spreading gain byαi , defined as:

αi =
Pihi1

∑N
j=1
j 6=i

Pjh j1 +σ2
1

+ · · ·+ PihiK

∑N
j=1
j 6=i

Pjh jK +σ2
K

(D.1)

K is the number of “receivers” in the network, andhik is the “path loss” coefficient in the signal

from terminali when received atk. αi can be thought of as a desired “carrier to interference ratio”

(CIR).

D.1.2 The Capacity question

Conditions are sought under which a given N-vector of positive numbers,~α :=
[

α1 · · · αN

]t
,

is such that there exists another N-vector of positive numbers,
[

P1 · · · PN

]t
, satisfying appro-

priate constraints, and equation (D.1) for eachi. If this is the case, the system ofN equations like

(D.1) has a feasible solution, and the vector of power ratios~α is said to be in the “capacity region”

of the system.

D.1.3 Normalizations and re-formulations

Noise normalization.Let all powers be divided byσ2
1+ · · ·+σ2

K . Also, letνk = σ2
k/(σ2

1+ · · ·+σ2
K).

Although this normalization introduces no notational change on the power vector, it is understood

that henceforth all powers are expressed as multiple of the total noise powerσ2
1 + · · ·+σ2

K .

Total received power from a given transmitter. Let

Qi := Pi

K

∑
k=1

hik (D.2)
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Scaled power. Let qi := Qi/αi (The total received power from terminali is “scaled” by that termi-

nal’s desired CIRαi).

Relatives losses.Let

gik :=
hik

∑K
j=1hi j

(D.3)

The power at receiver k coming from transmitteri, Pihik = gikαiqi .

Now, the basic macro-diversity equation can be restated as:

qigi1

∑N
j=1
j 6=i

α jq jg j1 +ν1
+ · · ·+ qigiK

∑N
j=1
j 6=i

α jq jg jK +νK
= 1 (D.4)

Notice thatPi = αiqi/∑K
k=1hik, which is measured as a multiple of the total noise powerσ2

1 + · · ·+
σ2

K .

D.1.4 Macrodiversity matrix relations

Let

Yik(~q) :=
N

∑
j=1
j 6=i

α jq jg jk +νk (D.5)

Yik(~q) can be written as the scalar product of vectors as:[
g1k · · · gi−1,k 0 gi+1,k · · · gNk

]
·D~q+νk

with

D :=


α1 0 0 0

0 α2 0 0

0 0
... 0

0 0 0 αN

 (D.6)

so that,

D~q =


α1q1

α2q2
...

αNqN


It will prove useful to recognize the vectors~Yi(~q) :=

[
Yi1 · · · YiK

]t
.

By “stacking” these interference vectors, one arrives at a “macro-vector” of length NK satisfy-

ing:
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~Y :=



~Y1

~Y2
...

~YN−1

~YN


= GD



q1

q2
...

qN−1

qN


+



~ν
~ν
...

~ν
~ν


(D.7)

whereG is a matrix defined as



~0 ~g2 · · · ~gN−1 ~gN

~g1 ~0 · · · ~gN−1 ~gN

· · · · · · · · · · · · · · ·
~g1 ~g2 · · · ~0 ~gN

~g1 ~g2 · · · ~gN−1 ~0

≡


G1

G2

...

GN−1

GN


(D.8)

with~0 the zero vector of appropriate length, and

~gi :=


gi1
...

giK

 ~ν :=


ν1
...

νK

 ~~ν :=


~ν
...

~ν

 (D.9)

The matrixGD is some times denoted aŝG . G ik (respect.Ĝ ik) may denote the specificrow of G
(respect.Ĝ) “matching”Yik, with G i (respect.Ĝ i) the corresponding sub-matrix. Thus,

Yik = G ik ·D ·~q+νk ≡ Ĝ ik ·~q+νk (D.10)

The preceding notational transformations can be clarified by considering the specific case in which

there areN = 3 transmitters andK = 2 receivers. In this case:

~q =

 q1

q2

q3

 ; D =

 α1 0 0

0 α2 0

0 0 α3



~Y1 ≡

[
Y11

Y12

]
=

[
0 g21 g31

0 g22 g32

] α1q1

α2q2

α3q3

+

[
ν1

ν2

]

≡
[

~0 ~g2 ~g3

]
D~q+~ν
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~Y2 ≡

[
Y21

Y22

]
=

[
g11 0 g31

g12 0 g32

] α1q1

α2q2

α3q3

+

[
ν1

ν2

]

≡
[

~g1 ~0 ~g3

]
D~q+~ν

~Y3 ≡

[
Y31

Y32

]
=

[
g11 g21 0

g12 g22 0

] α1q1

α2q2

α3q3

+

[
ν1

ν2

]

≡
[

~g1 ~g2 ~0
]

D~q+~ν

~Y ≡

 ~Y1

~Y2

~Y3

≡



Y11

Y12

Y21

Y22

Y31

Y32


=



0 g21 g31

0 g22 g32

g11 0 g31

g12 0 g32

g11 g21 0

g12 g22 0



 α1q1

α2q2

α3q3

+



ν1

ν2

ν1

ν2

ν1

ν2


≡

 ~0 ~g2 ~g3

~g1 ~0 ~g3

~g1 ~g2 ~0

D~q+

 ~ν
~ν
~ν



D.2 A fixed-point problem

Equation (D.4) can now be re-written as:

qigi1

Yi1
+ · · ·+ qigiK

YiK
= 1 (D.11)

For afixedinterference vector~Y this equation can be easily solved forqi , to obtain the vector~q which

would satisfy the system of equations of the form (D.11). This suggests the following approach. For

a given~Y, define the transformation:
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~T(~q) :=


(

g11
Y11(~q) + · · ·+ g1K

Y1K(~q)

)−1

...(
gN,1

YN,1(~q) + · · ·+ gN,K

YN,K(~q)

)−1

 (D.12)

~T(~q) yields the power vector under which each transceiver would achieve its desiredαi if the in-

terference vector~Y remained fixed. Of course, as the power levels are adjusted, a new interference

vector results,~Y(~q) = GD~q+~~ν. This new vector will lead to further power adjustments, and so on,

in an iterative manner.

Under the appropriate conditions, this algorithm will “converge” in the sense that a vector~q∗

exists such that~q∗ = T(~q∗); i.e.,~q∗ is a “fixed point” of the mapping~T. These conditions determine

the feasibility of the ratiosαi .

D.3 Mathematical results

Several well-known results useful in solving fixed point problems are presented below. Some rele-

vant background material is discussed in a mathematical appendix.

D.3.1 Background material

Let S denote a vector space (for a formal definition of these spaces see [17, pp. 11-12]).

Norms and metrics. A norm, ‖·‖, on S is a function from S into the non-negative real num-

bersℜ+ “generalizing” the idea of the “Euclidean length” of a vector. It engenders a “metric”

(‘distance’), defined asd(x,y) = ‖x−y‖.

Infinity norm. ‖·‖∞ is defined as

‖~x‖∞ := max(|x1| , |x2| , · · · , |xN|) (D.13)

Linear operators. If T is a mapping from a vector space,S1, into another,S2, (i.e.,T : S1 → S2), it

is said to belinear if for any x, y∈ S1 andλ1 , λ2 ∈ℜ, T(λ1x+λ2y) = λ1T(x)+λ2T(y).

Theoperator norm of a linear operatorT is defined as

‖T‖ := sup
‖x‖6=0

‖T(x)‖
‖x‖

≡ sup
‖x‖=1

‖T(x)‖ (D.14)

where sup denotes the supremum or least upper bound.

Matrix infinity norm . When a linear operator is expressed asT(x) = Ax, with A a suitably

dimensioned matrix, and the underlying norm is‖·‖∞, its “operator norm” is the “maximum absolute
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row sum” ofA. If ai j denotes the element corresponding to theith row and j th column of matrixA,

‖A‖∞ := sup
‖x‖=1

|Ax|= max
i

(
∑

j

∣∣ai j
∣∣) (D.15)

Row sum of the product of two non-negative matrices. If A andB are suitably dimensioned

non-negative matrices, the row sum of the product,AB, can be obtained as the productA · rsum(B),
with rsum(B) the vector resulting from the sum of the columns ofB.

D.3.2 Brouwer’s Fixed Point Theorem

Theorem(Brouwer’s): LetT : S→ Sbe a continuous function from a non-empty, compact, convex

setS⊂ℜn into itself. There is ax0 ∈ Ssuch thatx0 = T(x0).

Proof: See [3, p.28].

D.3.3 Banach’s result

Contraction Mappings. Let S be a vector space endowed with the norm‖·‖. SupposeT is a

mapping from S into itself (i.e.,T : S→ S). If there is a real numberλ, 0≤ λ < 1 such that

‖T(x)−T(y)‖ ≤ λ‖x−y‖for all x, y∈ S thenT is said to be acontraction mapping.

Successive approximation. For expositional convenience, letTm(x) for x∈Sbe defined induc-

tively by T0(x) = x andTm+1(x) = T (Tm(x)), with m∈ {1,2, · · ·}.

Banach’s Contraction Mapping Principle: Let S be a closed subset ofℜn. Suppose thatT

is a mapping from S into itself. IfT is a contraction mapping on S, there is a unique vectorx0 ∈ S

such thatx0 = T(x0). Moreover,x0 can be obtained by “successive approximation”, starting from

an arbitrary initialx∈ S ; i.e., for allx∈ S, limm→∞ Tm(x) = x0.

Furthermore,

‖Tm(x)−x0‖ ≤
λm

1−λ
‖T(x)−x‖

Proof: See [13, Theorem 3.1, page 41].

More general versions of this result, and many extensions can be found in many sources, includ-

ing [13].

Contraction condition for differentiable mappings. If the considered vector space S isconvex

and the considered mapping is such that its derivativeT ′(x) exists over S, then for anyx1,x2 ∈ S,

andL := {x = x1 + t(x2−x1) : 0≤ t ≤ 1} the mean value inequality holds that

‖T(x1)−T(x2)‖ ≤ sup
x∈L

∥∥T ′(x)
∥∥‖x1−x2‖ (D.16)

Hence, in this situation‖T ′(x)‖ ≤ λ < 1 implies thatT is a contraction mapping on S [17, p. 272].
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D.4 Fixed points, and algorithms

D.4.1 From Sinto S

In order for the previously-mentioned results to be applicable to the mapping~T(~q), it must map

vectors from an appropriate set, to vectorsin the sameset.

D.4.1.1 Set of scaled power vectors

In general, any feasible scaled power vector~q must be in the setS:=
{
~q∈ℜN

+
~, 0≤~q≤~qL

}
with

~qL the “largest” feasible total received (scaled) power vector. IfPL
i is the transmission power limit

of transceiveri, qL
i = (1/αi)PL

i ∑K
k=1hik.

This set is closed by definition. It is straightforward to verify that it is also convex.

D.4.1.2 “into” condition

It is immediate that each componentTi(~q) is increasing in each component of~Yi . And each com-

ponent of~Yi(~q) is increasing in~q. Therefore, to verify that~T(~q) is in S, the critical value is~T(~qL).
Specifically, it is necessary thatTi(~qL)≤ qL

i or that, (see equation (D.12)),

gi1qL
i

Yi1(~qL)
+ · · ·+ giK qL

i

YiK (~qL)
≥ 1 (D.17)

where, by equation (D.5),Yik(~qL) = ∑N
j=1
j 6=i

α jqL
j g jk +νk.

Recall thatPihik ≡ gikαiqi . Hence, the preceding condition can be written as:

αi ≤
PL

i hi1

∑N
j=1
j 6=i

PL
j h j1 +ν1

+ · · ·+ PL
i hiK

∑N
j=1
j 6=i

PL
j h jK +νK

(D.18)

It may be reasonable to assume thatPL
i = PL∀i, and thatνk/PL is “very small” as compared to

∑N
j=1
j 6=i

h jk. Then, condition (D.18) becomes:

αi ≤
hi1

∑N
j=1
j 6=i

h j1
+ · · ·+ hiK

∑N
j=1
j 6=i

h jK
(D.19)

D.4.2 Existence of a fixed point

Proposition: If a vector of desired CIR,~α, is such that condition (D.17) is satisfied – or so is the

“neater” condition (D.19), under the mild assumptions under which it is valid – then~α is feasible.

Proof: The set S of feasible (scaled) power vectors is a closed, bounded and convex subset of

ℜN. If condition (D.17) or, when appropriate, (D.19) , is satisfied, the mapping~T(~q) is into. It is

considered self-evident (and can be shown) that this mapping is continuous over the set S. Therefore,
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Brouwer’s fixed-point theorem applies (see section D.3.2). Hence,~T(~q) has at least one fixed point.

Q.E.D.

However, Brouwer’s theorem says nothing about the uniqueness of the solution, or the behavior

of the algorithm discussed in section D.3.3.

D.5 Toward a unique fixed point

This section explores conditions under which the norm of the derivative of~T(~q) is less than one, so

that Banach’s principle can be applied. In this case, a unique fixed-point exists, and it can be found

via a simple, well-behaved algorithm (see section D.3.3).

D.5.1 Derivative of~T(~q)

~T ′(~q) is given by the corresponding “Jacobian” matrix of partial derivatives, where∂Ti/∂q j corre-

sponds to itsith row and j th column. From equation (D.12),

Ti(~q) =
(

gi1

Yi1(~q)
+ · · ·+ giK

YiK (~q)

)−1

(D.20)

Thus,
∂Ti

∂q j
=

∂Ti

∂Yi1

∂Yi1

∂q j
+

∂Ti

∂Yi2

∂Yi2

∂q j
+ · · ·+ ∂Ti

∂YiK

∂YiK

∂q j
(D.21)

∂Ti/∂Yik is obtained as:

gikY
−2
ik

(
gi1

Yi1
+

gi2

Yi2
+ · · ·+ giK

YiK

)−2

≡ gik

(
Ti

Yik

)2

(D.22)

Additionally, by equation (D.5),Yik(~q) = ∑N
j=1
j 6=i

α jq jg jk +νk. Therefore,

∂Yik

∂q j
=

{
0 for j = i

α jg jk for j 6= i
(D.23)

Replacing equations (D.22) and (D.23) into equation (D.21) one obtains that

∂Ti/∂qi ≡ 0∀i (D.24)
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and, for j 6= i, ∂Ti/∂q j =

T2
i

(
gi1

Y2
i1

∂Yi1

∂q j
+

gi2

Y2
i2

∂Yi2

∂q j
+ · · ·+ giK

Y2
iK

∂YiK

∂q j

)
=

α jT
2
i

(
gi1

Y2
i1

g j1 +
gi2

Y2
i2

g j2 + · · ·+ giK

Y2
iK

g jK

)
=

α jT
2
i

K

∑
k=1

gikg jk

Y2
ik

(D.25)

D.5.2 Norm ofT ′(~q)

By definition,
∥∥∥~T ′(~q)

∥∥∥
∞

is the maximum absolute row sum of~T ′(~q) (see section D.3.1). In view of

equations (D.24) and (D.25), theith row of ~T ′(~q) adds up to

N

∑
j=1

∂Ti

∂q j
= T2

i (~q)
N

∑
j=1
j 6=i

α j

K

∑
k=1

gikg jk

Y2
ik(~q)

= T2
i (~q)

K

∑
k=1

gik

Y2
ik(~q)

N

∑
j=1
j 6=i

α jg jk

:= fik(~q)ρik (D.26)

Observe thatρik := ∑N
j=1 α jg jk−αigik is the sum of the components ofĜ ik, which is the row of the

matrix GD ≡ Ĝ associated withYik (see equation (D.10)). It represents the parameters in equation

(D.26) which can be influenced by limiting the vector~α. For a given~q, the function fik(~q) :=
T2

i (~q)∑K
k=1gik/Y2

ik(~q) is determined by the channel via the various path loss coefficients.

D.5.3 Contraction condition

On the basis of the preceding development, in order for
∥∥∥~T ′(~q)

∥∥∥
∞

< 1 so that~T(~q) is a contraction,

~α must be such that

max
~q

fik(~q)ρik < 1 ∀i,k (D.27)

with ρik the sum of the components ofĜ ik(see equation (D.10)) andfik(~q) given by:

fik(~q) =
gi1

Y2
i1

+ · · ·+ giK

Y2
iK(

gi1
Yi1

+ · · ·+ giK
YiK

)2 (D.28)

D.5.4 Properties of the Contraction Condition

1. Well-definedness. Condition (D.27) is well defined, becausefik is a continuous function, for

which it must have a maximum over a closed and bounded set (see sec. (D.4.1.1))
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2. fik ≥ 1 . This is so becausefik is of the form(λ1φ(x1)+ · · ·+λKφ(xK))/φ(λ1x1+ · · ·+λKxK)
with φ(x) = x2, λi ∈ [0,1], ∑i λi = 1 andxi positive. The functionφ(x) = x2 is easily shown to

by convex. And for any convexφ, Jensen’s inequality holds thatλ1φ(x1)+ · · ·+ λKφ(xK) ≥
φ(λ1x1 + · · ·+λKxK). (See also section D.5.6).

3. If ~q is such thatYik(~q) = Yil (~q) ∀k, l then fik(~q) = 1. This follows directly because∑k gik = 1

by definition (see equation (D.3))

4. If each transceiver is “equidistant” to each “receiver” (antenna), in the sense thathik =
hil ∀i,k, l then fik(~q)≡ 1. This also follows directly because in this casegik = gil ≡ 1/K ∀i,k, l

(see equation (D.3)). In this case, the contraction condition (D.27) reduces to‖GD‖∞ ≡
‖G~α‖∞ < 1

5. In the special case in which K=2, the maximumfik is attained for the particular~q which

creates the largest “separation” betweenYi1 andYi2. (See section D.5.6 ).

D.5.5 A unique solution and an algorithm to find it

Proposition: If a vector of desired CIR,~α, is such that condition (D.17) , or, when appropriate,

condition (D.19), is satisfied, and so is condition (D.27) above, then~α is feasible. Furthermore, the

power vector leading to~α is unique, and can be obtained via the well-behaved algorithm described

in section D.3.3.

Proof: The “power set” S is a closed subset ofℜn (see section D.4.1.1). If condition (D.17) , or,

when appropriate, condition (D.19), is satisfied, the transformationT(~q) is a mapping from S into

S. If condition (D.27) is also satisfied,T is a contraction mapping. Therefore, under the hypothesis

of this proposition, Banach’s principle applies (see section D.3.3). Q.E.D.

D.5.6 Maximum of an interesting ratio

It is of interest to determine a supremum of the form

sup
0≤x0≤x1,x2≤x3

λx2
1 +(1−λ)x2

2

(λx1 +(1−λ)x2)2 (D.29)

where 0≤ λ≤ 1 is fixed, andx1 ≤ x2 are positive real numbers in certain interval.

The above ratio is a continuous function for which it must necessarily have a maximum over

any closed and bounded set.

Also, x12 := λx1 +(1− λ)x2 is simply a convex combination (“mixture”) ofx1 andx2; i.e., a

point betweenx1 andx2. Likewise, λx2
1 + (1− λ)x2

2 is a “mixture” of x2
1 andx2

2, with the same

“mixture” parameterλ (see figure (D.1)).

The function f (x) := x2 is easily shown to be convex. And, by definition, any convex function

satisfiesλ f (x1)+ (1−λ) f (x2) ≥ f (λx1 +(1−λ)x2). Therefore, the ratio (D.29) is always greater

than or equal to 1.



150

x
0
 x

1
 x

2
 x

3
 

x
12

 

x
03

 

λx
0
2+(1−λ)x

3
2

(λx
0
+(1−λ)x

3
)2

(λx
1
+(1−λ)x

2
)2 

λx
1
2+(1−λ)x

2
2 

y=x2 

Figure D.1: Maximizing an interesting ratio:λx2
i +(1−λ)x2

j versus(λxi +(1−λ)x j)2

It is straightforward to verify that the first-order optimizing conditions for this ratio are satisfied

wheneverx1 = x2. But in this case, the ratio equals 1, which is its smallest possible value. Therefore,

the maximum is attained over the boundary of the feasible region; i.e.,x1 = x0 andx2 = x3 leads to

the maximum.

D.6 Discussion

This note provides an answer to the question of whether a certain vector,~α, of positive numbers

interpreted as desired “carrier-to-interference ratios” is feasible in a macrodiversity CDMA envi-

ronment, in the sense that there are feasible power levels which produce the desired ratios. The

answer is in the affirmative whenever condition (D.17) is satisfied. Under mild assumptions, this

condition takes the simple formαi ≤ Ai , with Ai a relatively simple function involving ratios of the

various path loss coefficients of the active transceivers. However, not much can be said about the

underlying power vector, or the performance of any particular algorithm in finding it.

This note also explores a more elaborate condition, (D.27).Togetherwith condition (D.17),

condition (D.27) implies that the power vector leading to~α is unique, and can be found by way of

a well-behaved simple algorithm. This algorithm can depart from an arbitrary power vector. It is of

the formxn+1 = f (xn) with x0 arbitrary. A simple expression gives the “error” after a given number

of iterations.

In general, condition (D.27) depends on the maximum of a relatively simple function. More
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research is needed to determine the practical implications of obtaining this maximum, or a reason-

able approximation for it. However, in special cases, in particular when each terminal happens to

be “equidistant” from the antennas, this condition reduces to‖G~α‖∞ < 1. In words, this condition

requires that the “largest weighted average” of the desiredαi ’s be less than one. The possible weight

vectors are the rows of the “relative gains” matrixG . It is significant that each row of this matrix

always has at least one element equal to zero, which implies that, in verifying this condition, at most

N-1 of theαi ’s are simultaneously weighted.

Space limitations preclude a comprehensive contrasting of these results to those originally pre-

sented in [9]. Nevertheless, some brief comments will be made.

First, condition (D.17) does not have an obvious “counterpart” in [9]. The result derived in [9]

under the “self-interference” approximation is∑N
i=1 αi < K, which limits the sum without imposing

an individual limit on each term. However, one can make a rough comparison by assuming that

condition (D.19) applies and is satisfied by eachi, and that each terminal is “equidistant” from

each antenna so thathik ≈ hil ≈ hi ∀i,k, l . This symmetry would practically arise, for example, with

K = 2, if the two receiving antennas are directly across from each other in opposing sides of a road

segment, and each terminal is located along the axis of this segment. When this symmetry exists,

N

∑
i=1

αi ≤
N

∑
i=1

K
hi

∑N
j=1
j 6=i

h j
≈ K

∑N
i=1hi

∑N
j=1
j 6=i

h j
> K

This indicates that condition (D.19) is “less conservative” that the approximated condition from [9].

The more elaborate condition, (D.27), may also be compared, with caution, with the approxi-

mated result from [9], by considering, again, the special symmetric situation. In this case, condition

(D.27) reduces to‖G~α‖∞ < 1, as remarked above. Additionally, eachgik = 1/K (see equation

(D.3)). Therefore, thej th row of this matrix has the form(1/K)
[

1 · · · 1 0 1 · · · 1
]

where the only zero is at thej th position (see equation (D.8)). Hence, the product of thej th row of

G by~α simply adds all the components of~α except forα j and divide the sum byK. For example,

with 3 terminals, the second row ofG is (1/K)
[

1 0 1
]

and the product of this row by~α equals

(α1 + α3)/K. ‖G~α‖∞ simply picks out the largest component of the productG~α. The j th compo-

nent ofG~α is a sum of the form(∑N
i=1 αi −α j)/K. Thus, the largest component ofG~α will be the

one that leaves out of the sum the smallest component of~α. For instance, ifαN happens to be the

smallestαi , then‖G~α‖∞ = (1/K)∑N−1
i=1 αi . Hence, in the “symmetric” case, the approximated result

demands that∑N
i=1 αi < K, whereas condition (D.27) only imposes that∑N−1

i=1 αi < K (assumingαN

is the smallest desired CIR).

It is stressed that, in the context of a 3G network, when relatively few high data-rate terminals

may be sharing a channel, the less conservative results could make a significant difference. For ex-

ample, suppose K=1, and that three high data-rate sources wish to share a channel, each demanding

a CIR of 2/5. This is plausible in a VSG-CDMA situation (see introduction). The approximated

result dictates that only 2 of them can be accommodated, whereas condition (D.27) indicates that all
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three can, “with room to spare”. In a 3G environment, leaving, unnecessarily, out even one terminal

could be significant, if, as presumed, the additional terminal would have transmitted megabits of

data each second.
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