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Abstract

Many radio resource optimizations of practical interest share a common analytical core. A frame-
work focused on this core enables robust and tractable analysis, and provides clear answers that
apply to a wide variety of physical layer configurations. This framework has three key elements: (i)
a tractable abstraction of the human sensory system, (ii) a tractable abstraction of the physical layer
of a wireless communication link, and (iii) a fundamental technical result. In these 3 elements, a
function about whictall that is knownis that it is sigmoidal, that is, that its graph is an “S-curve”,
plays a central role. The fundamental result involves the maximization of the ratio f(x)/x.

Fractional programming is the study of the optimization of a ratio of two functions. Current
fractional programming literature involves ratios of concave and convex functions. But a sigmoidal
function is neither concave nor convex. This work characterizes the maximization of the ratio f(x)/x
for any function f having sigmoidal shape. Without imposing any particular algebraic functional
form (“equation”) on the considered function, this work shows that the maximizer always exists, is
unigue, and can be graphically described and determined. Additionally, the ratio f(x)/x is shown
to be quasi-concave. The maximization of the ratio f(x)/g(x), with g a monotonic function, can
be approached by writing this ratio as h(t)/t with t=g(x). If h(t) retains the sigmoidal shape, the
preceding analysis can be applied.

This analytical framework is applied to various issues of current interest, involving resource
optimization in the context of wireless communications, with emphasis on third-generation cellular
systems. The applications include (i) decentralized power control (i) power and data rate assign-
ment for maximal data throughput when data and media terminals share a CDMA cell, (iii) power
and coding rate optimization for the wireless transfer of image or video files, and (iv) choosing an
optimal level of media distortion when fidelity is expensive.
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Chapter 1

Introduction and Overview

Many radio resource optimizations of practical interest share a common analytical core. A frame-
work focused on this core enables robust and tractable analysis, and provides clear answers that
apply to a wide variety of physical layer configurations. This framework has three key elements: (i)
a tractable abstraction of the human sensory system, (ii) a tractable abstraction of the physical layer
of a wireless communication link, and (iii) a fundamental technical result. In these 3 elements, a
function about which all that is known is that it is a sigmoidal; i.e., that its graph is an "S-curve",
plays a central role. The fundamental result involves the maximization of thefriadigx with f

an S-curve. Examples of radio resource optimizations of practical interest to which this framework
can be applied include decentralized power control, power and data rate assignment for maximal
network throughput, power and coding rate selection for the transfer of media files which have been
scalably encoded, and choosing the “right amount” of tolerable media distortion when less distortion
means higher cost.

1.1 Overview

The three elements of this framework arise naturally in the context of one of the mentioned appli-
cations: power and coding rate selection for video streaming, which is the topic of chapter 6.

i SO BLE LARGE .
- - [
ENCODER y bits per BUFFER (LIM)Rf(x)
L T secs of video

¥ SCALABLE LARGE
M <—— | VIDEO - BUFFER -
DECODER

Figure 1.1: Schematic diagram of a system for the streaming of scalably encoded video over a
wireless link

Figure 1.1 shows schematically the video streaming system of interest. An energy-limited termi-
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nal needs to transfer over a wireless link a “long” video sequence. Each T secs of video is encoded
as a fully embedded bit stream, as supported by MPEG standards. This stream is “scalable” in
the sense that it can be truncated at an arbitrary pgjrand decoded, leading to various levels
of reproduced media quality. The file corresponding to a given segment must be transferred in a
deadline ofA seconds. Files will be split into small packets for transmission purposes and error-
control coding bits will be added. Packets received in error which cannot be corrected resultin ideal
re-transmissions until correctly received and confirmed. Correctly received packets are placed in a
large buffer. Transferring each file complete will result in maximal quality per segment, but also
in a greater expenditure of energy per file, a hence a shorter battery life. Conversely, transferring
few bits per segment will lengthen the battery life, at the expense of possibly unacceptable segment
viewing quality. The terminal must jointly optimize both the truncation point of the embedded bit
stream (coding rate), and its transmission power.

Performing this joint optimization necessitates three crucial elements: (i) a fukbtioryiving
the end-user “perceptual quality” or “utility” of a decoded video segment when theydasan the
correspondindruncatedfile (coding rate); (ii) a functiorfs(x) giving the probability of successful
reception of a data packet when the signal-to-interference ratio (SIR) at the recetydfiilsa
criterion leading to an index to be optimized as function of the quality of individual video segments,
and the energy spent per segment.

Figure 1.2: Representative S-curvék. is "mostly" concavel, is "mostly” convex.U, approxi-
mates a "step” functiolJs includes a "ramp" that follows a straight line over a limited range.

The frame-success function (FSF), which gives the probability that a data packet is received
successfully as a function of the terminal’s signal-to-interference ratio (SIR) at the receiver, is de-
termined by physical attributes of the system, including the modulation technique, the forward error
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detection scheme, the nature of the channel, and properties of the receiver, including its demodu-
lator, decoder, and antenna diversity, if any. Obtaining an exact expression for this function for a
realistic model of a wireless communication setting may be prohibitively difficult or impossible.
And even when this function is available, it may be intractable or very inconvenient, and highly de-
pendent on the chosen physical layer configuration. However, one can safely assume that, whatever
this function is, its graph is S-shaped, as shown in fig. 1.2. Consequently, the analysis will apply to
many physical layer configurations of practical interest, as long as they give rise to an FSF that has
an S-shaped graph.

There are additional practical reasons why the S shape may be chosen for modeling a monotonic
function of interest. An arbitrary S-curve starts out convex and smoothly transitions to concave. But
the inflexion (transition) point is arbitrarily placed. Therefore, as fig. 1.2 shows, this family of curves
in fact contains as special cases curves that are “mostly” concave (inflexion point is “very close”
to the origin) and others that are “mostly” convex (inflexion point is “very far” from the origin).
Furthermore, the “ramp” of an S-curve may be nearly vertical, in which case the curve behaves
like a “step” (threshold) function. Or this “ramp” can approximate a straight line, in which case
the S-curve expresses a near linear relation over certain range. These shapes should accommodate
many situations of interest.

A quality-rate theory is not readily available, but can be arrived at through the concept of dis-
tortion. Distortion is typically defined as a relatively simple mean square measure of the difference
between a signal and its copy. The properties of any fundi@R) giving distortion as a function
of coding rate for a given information source are well known. It is generally accepted tHatRhe
function is decreasing and convex. Tiwerceptualguality of an “imperfect” copy of a signal is de-
termined by the human sensory system (visual, auditory, etc). Common distortion measures behave
poorly when distortion is large. However, within certain range it seems reasonable to assume that
the perceptual quality is somehow determined by distortion; i.e., that a fur@tidhthat translates
distortion into perceptual quality can be found. The quality-distortion function cannot be derived,
and should not be imposed. It should be obtained by psychophysical experimentation. However,
one can make some reasonable assumptions about the properties that any such function should pos-
sess. Figure 1.2 shows some plausible basic relations, which are explained in the corresponding
caption.

Further reflection indicates that it is reasonable to assume that the graph@fhdéunction
is a “reversed” S-curve, as shown by fig. 1.4. This graph strictly generalizes the step function often
assumed in the literature. And, like the family of regular S-curves, this family also includes as
special cases curves that are “mostly” convex, others that are “mostly” concave, and some whose
“ramps” follow closely a straight line over a given interval. Thus, if the analyst assumealthat
that is knowrabout theQ(D) curve is that it is a reverse S-curve, and conducts the analysis on the
basis of properties derived from this shape, the solution procedure and conclusions will be valid for
a wide variety of plausibl€(D) relations.

With Q(D) denoting the reversed S-curve givipgrceptualguality as function of distortion, it



Quality

MAX

0
Distortion

Figure 1.3: Quality vs. distortion: Some plausible simple relations are: (i) fidelity equals quality
(red dashed line); (ii) hard threshold (step); (iii) ramp (blue broken line). The ramp includes as
special case the thresholé & b = ¢ ) and the linear relationd = 0, b = Dyax ). But as shown

by the next figure, the reverse S-curve includes all of these cases and more.



utility

distortion

Figure 1.4: Perceptual quality ("utility") as a function of distortion: The family of (reversed) S-
curves generalizes the step function often assumed in the literature, and includes many interesting

special cases.
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is clear that the composite functi@{D(R)) :=U (R) yields perceptual quality directly as a function

of the coding rate. It is then of interest to characterize the composite fur@{d(R)) whenall that

is knownaboutD(R) is that it is decreasing and convex, aitthat is knowraboutQ(D) is that it is

a "reversed" S-curve. The caption of fig. 1.5 contains an approximate analysis that suggests that the
graph ofU (R) = Q(D(R)) is a (non-reversed) S-curve, as displayed in fig. 1.2. Figure 1.6 confirms
this conjecture for specifiQ(D) curves, and th®(R) function of the memoryless Gaussian source.

Quality
/2
(R,.D,) )
/
(®,D,)
/ Distortion
//
/
P -
0 R, R
Rate
2
=
po]
(e}
0 D, D,

Distortion

Figure 1.5: The convex curve at the top correspondX®) , which relates coding rate to distortion.
The S-curve at the botton@Q(D), relates perceptual quality to distortion. The composite function
Q(D(R)) :=U(R) yields perceptual quality directly as a function of the coding rate. Some reflection
indicates that ifQ(D) is approximated by the broken red line at the bottom, the resultifig) is

the broken red line at the top. FQ a reversed S-curve, we expétfR) = Q(D(R)) to yield an

(increasing) S-curve.

At this point, of the three items identified previously as key to the analysis, two has been found:
both the FSF and the quality-rate function can be taken to be S-curves. The index to be optimized
needs to be defined. A reasonable objective is to maximize the total perceptual quality (utility) that
gets transferred by the time energy runs out; that is, to maximiza(y), wheren = E/c(y), with
E the available energy, arady) the energy cost of successfully transmitting-lng file in A secs.

This is equivalent to maximizing(y)/c(y) (subject to an appropriate constraint), or perceptual

quality per Joule.



[1+exp(D/10 - B)]""
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Figure 1.6: The preceding analysis can be applied to the specific case of a memoryless Gaussian
source, whos®(R) 0 2R (2nd subplot). At the top, there are two plausible quality-distortion
curves. At the bottom are the graphs of the composite funct@iXR)) := U (R) corresponding

to the Q functions at the top, and the Gaussian rate-distortion curve. As the preceding analysis
suggests for the general case, in these examples the graQB@R)) are (increasing) S-curves.



The detailed analysis of the maximization wffy)/c(y) is found in chapter 6; an outline is
presented now. First, it is easily established that, on the avetad®l)R f(x)A information bits
are correctly received i secs.L/M is the ratio of information bits to the packet lengkis the
raw data rate of the terminal, arfdis a slight modification of the FSF. For givgnandA, there
is a specific SIRx(y) that satisfiefL/M)Rf(x)A =y, and there is a specific transmitted power,
P(y), that yieldsx(y). Thus, the total number of T-sec video segments of qualiyy that can be
transferred with an energy budget®iis E/(P(y)A). The total quality viewed i$E /A)u(y)/P(y).
For fixedE andA, it is sufficient to maximizei(y)/P(y).

Thus, the terminal must solve:

maxw maxiu(Bf(X))
X,y X X

X
sty=Bf(x) OR s.t. 0<x<x

0<x<x

with B = (L/M)RA interpreted as the maximum amount of information bits (“best case scenario”)
that can be transferred in the deadliyeandx the SIR.

uand f are both S-curves. The composite functigi) := u(Bf(x)) is expected to retain the
S-shape. Hence, in order to solve this problem, the solution to maximizik)gx whenall that is
knownabouth is that it is an S-curve needs to be found.

1.2 Content and Organization

The research reported herein has several “branches” that were pursued quasi-independently. Most
chapters started as self-contained papers. While an effort has been made to integrate the various
papers into a coherent report, the document still has the “flavor” of an edited collection of papers.
While redundancy and multiplication of information do exist, intentionally or otherwise, an advan-
tage of this fact is that chapters are largely self-contained. Pertinent literature is reviewed in each
chapter.

This work continues by investigating the maximization of the r&f) /x whenall that is known
aboutf is that its graph “starts out” convex at the origin, and “smoothly” transitions to concave as
it approaches a horizontal asymptote. Problems involving the optimization of ratios of functions
have been intensively studied in the last few decades, and are commonly called “fractional pro-
gramming”. These problems arise naturally in many contexts, including macroeconomics, finance,
inventory control, and numerical analysis, among others. Reference [5] is a very recent survey of
this literature. However, the most general formulations studied in this literature involve ratios of
concave and convex functions. In a few cases, the definitions of concavity and/or convexity are
relaxed to include a somewhat larger class of functions. But, the sigmoidal functions studied herein
are, by definition, neither concave nor convex (very loosely speaking they are “half and half”),
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and are, therefore, excluded from the current fractional programming literature. Without imposing
any particular algebraic functional form (“formula”) on the considered functions, chapter 2 shows
that the solution to this maximization problem always exists, is unique, and can be graphically de-
scribed and determined. A tangent line drawn from the origin to the grapispécifies the optimal
solution. Additionally, the ratid (x) /x is shown to be quasi-concave.

The remainder of this work applies the basic analytical core afforded by sigmoidal fractional
programming to various issues of current interest, involving the optimization of power, data rate, and
coding rate in wireless communications, with emphasis on third-generation cellular communication
systems.

Decentralized power control in a multiple-transmission-rate scenario relevant to third-generation
wireless networks is studied first. Chapter 3 addresses the critical aspect of specifying a well-
behaved, sensible quality-of-service (QoS) index (“utility function”) for a data terminal to maxi-
mize. An index that exhibits solid technical behavior, is physically significant, intuitively appealing,
and applicable to a wide variety of physical layer configurations is proposed. Subsequently, in chap-
ter 4, decentralized power control is set up as a “game” in which each data transmitting terminal
maximizes its QoS. Closed-form Nash equilibrium conditions and power levels are derived “from
first principles”. It has been known for some time that Nash-equilibria are generally “inefficient”. In
fact, when each data-transmitting wireless terminal chooses a transmission power level to maximize
a sensible QoS index, they settle on equilibrium power levels that are “too high”. The challenge
is to induce the terminals to move toward a more efficient operating point in a decentralized fash-
ion. This chapter proposes a relatively simple mechanism, available in the economics literature, to
achieve an efficient decentralized allocation of power.

The next chapters focus on media transmission. Chapter 5 analyzes resource management in-
volving scalably encoded information. Scalable encoders, as that of the JPEG 2000 standard, pro-
duce files which can be truncated at an arbitrary point and decoded. An energy-efficient policy for
the transmission over a wireless network of scalably-encoded images is found. At the core of the
analysis is an “S-curve” yielding a measure of “quality” of the decoded information as a function
of the “truncation point” (coding rate). Transmission power, and the coding rate are jointly op-
timized. The single-user case is fully analyzed, and a closed-form solution given, which can be
clearly identified, graphically. The analysis leads to the maximization, over an appropriate region,
of the produck f(x)/x x u(y)/y, wherex is the received SIRf is the frame success functionjs
the chosen number of decoded bits, arid the “quality” function.k f(x) /x has the unit bits/Joule,
while quality/bit is the unit oli(y) /y. Thus, the maximized product is an intuitively appealing index
in quality/Joule.

Chapter 6 extends the analysis of the preceding chapter to the more interesting case of scalable
video streaming (this is the sample application discussed in the present chapter). The analysis
leads to the maximization of the quality-to-power ratio, which is equivalent to maximizing quality
per Joule. Although the problem is set up as a joint optimization of power and coding rate, the
analysis indicates that any one of these two variables fully determines the other, when the underlying
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streaming application constrains the transmission time. A{¥h the quality of a video segment
as a function of the coding raté,the frame success function, aBdcertain constant, the terminal
should choose its transmission power so that the received 8i&imizes the ratig(x)/x, with g

a composite function of both S-curvegB f(x)).

The quality-distortion curve introduced in the present chapter can also be interpreted as a “utility
function” giving the “usefulness” to an observer of an “imperfect” signal. A key difference between
perceptual quality and “utility” is that utility is application-dependent. For instance, for a given
observer, a level of distortion deemed “unbearable” for a “serious” application, may be perfectly
acceptable (to the same observer) in a less “serious” situation. Chapter 7 takes the “utility” point of
view. A “utility function” on distortion, assumed to be a reversed S-curve, mathematically captures
the idea that media signals can be useful to humans at various degrees of noticeable distortion.
When less distortion means a higher cost, an end-user may prefer more distortion, in exchange for
energy, money or other savings. In chapter 7, two problems related to this issue are analyzed. First,
a consumer with a limited budget can acquire more media files, by accepting more distortion per
file. The amount of distortion that maximizése sumof the utility of each purchased file is found
and clearly identified in the graph of the utility function. Second, an energy-limited transmitter
with many media files to transfer can, statistically, reduce distortion per file, at the expense of fewer
transferred files. A solution that maximizes total expecteditility is given through the graph of the
expecteditility as a function of the received SIR. Because the proposed family of utility functions
contains as a special case the step function typically assumed by the literature, this formulation adds
to the literature, and takes nothing away.

All three analyses involving media files can be extended to consider multiple terminals, through
the application of game theory, as done in chapter 4. In fact, this is the reason why CDMA quantities
are used in defining the signal-to-interference ratio (SIR). For a more general analysis, one can
replace (in the single-terminal situation) the SIR with the familiar retjpNo, with the numerator
denoting energy per bit, and the denominator denoting “noise energy”.

The situations discussed so far focus on the terminal/user. That is, the analysis seeks the best
allocation from the standpoint of the terminal, as opposed to the network’s administrator or owner.
By contrast, chapter 8 seeks centralized power and data rate allocations in order to maximize the
cell weightedthroughput. This setting is relevant to the uplink of a variable spreading gain (VSG)
CDMA cell, a technology capable of accommodating multi-rate traffic, which is supported by third-
generation standards. A weight is associated with the throughput of each terminal. The weights ad-
mits various practical interpretations, including per-bit utility, priority, or unit price paid to the net-
work by the user. The traffic is assumed delay tolerant, and the cell is assumed interference-limited
(out-of-cell interference and random noise are deemed negligible). First, a two-terminal-only sce-
nario is fully solved. This special case establishes the terminology and the solution procedure, and
provides a great deal of intuition. Subsequently, the analysis is extended to an arbitrary number
of terminals. A main conclusion of the analysis is that at least one terminal should operate at the
highest available data rate, and that termimedsoperating at this rate should operate at the same
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signal-to-interference ratio (SIR), a value that maximizes the fgt®/x, with f a slight modifica-
tion of the frame-success function. The development in this chapter describes a solution procedure
leading to the global optimizer, for the special case in which only two weights are considered.

Chapter 9 discusses how to extend the preceding model to consider three additional items:
(i) transmission power limits, (ii) non-negligible out-of-cell interference, and (iii) the presence of
media-transmitting terminals with fixed bit rates and inflexible SIR requirements. Power limita-
tions are important for obvious reasons. However, when out-of-cell interference is negligible, the
power allocation question reduces to finding a vector of carrier-to-interference ratios involving the
received powers of the terminals. The specific power levels are, in theory, arbitrary. However, when
the noise term includes strong out-of-cell interference, the values in absolute terms of the power
levels are important, and the power limitations of the terminals need to be taken explicitly into ac-
count. Additionally, there may be media-transmitting terminals operating at fixed bit rates and SIR.
These media terminals can be thought of as additional sources of “noise”, which decrease the total
throughput of the data terminals. Chapter 9 focuses on the interaction of a power-limited media
terminal, with two data terminals, one of which is more “important” than the other. The aim is to
show that much of the analysis of the preceding chapter can still be applied, with relatively minor
modifications, to the more complicated and realistic situation of this chapter.

Chapter 10 discusses some of the general limitations of this work, suggests extensions and
related topics for future research, and highlights some of the main contributions.

The appendices provide various technical results. Appendices C and D are of special note. In ap-
pendix C, the procedure used to find the equilibrium allocation of the game of chapter 4 is extended
to address a somewhat more general issue: power allocation when terminals SIR requirements are
“elastic”. That is, each terminal has a preferred or optimal SIR value, but is willing and able to op-
erate at lower values. The proposed procedure maximizes the number of terminals operating at their
preferred SIRs, subject to the constraint that no terminal be sacrificed to help another. Closed-form
analytical expressions are provided through the development.

Appendix D focuses on macro-diversity, a scheme in which the cellular structure of a CDMA
system is removed and each transmitter is jointly decoded by all “receivers”. This scheme has
been shown to increase the capacity of CDMA wireless networks. The available macrodiversity
capacity results rely on a “self-interference” approximation, which matyoe appropriate for 3rd
generation cellular systems. Explicitly considering power constraints, and without resorting to this
approximation, this appendix applies well established mathematical results to derive capacity results
that are less conservative than those previously available.
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Chapter 2

Sigmoidal Fractional Programming

2.1 Introduction

Sigmoidal functions are particularly useful, having played a fundamental role in the modeling of a
wide variety of interesting phenomena in the physical, biological and social sciences. One reason
for their ubiquity is that the graph of the solution to the differential equatitin = rx(t)(1—x(t) /k)

has the sigmoidal shape (“logistic growth”). This equation, which arises naturally in many dynam-
ical systems, was introduced in [44], in the context of population growth. In this conigxt,
denotes the size, at timeof certain population, whose instantaneous growth rate is directly propor-
tional to both its current size, and the difference between this size and the environment’s “carrying
capacity” (maximal sustainable population size) Reference [28] introduces the generalization

X (t) = rx(t)[1 — (x(t)/k)P], and argues its usefulness; and [25] describes the statistical fitting of
the four-parameter family of curves introduced by [28]. A recent survey, [39], discusses other gen-
eralizations, and introduces its own. Reference [22] argues that sigmoidal functions may be even
more useful than traditionally thought, because in many interesting situations, a complex process
whose growth behavior may not seem sigmoidal, can be fruitfully modeled via the superposition of
various sigmoidal functions in a single model. This reference provides examples or suggests appli-
cations of this approach in many domains, including ecology, psychology, and socio-technological
inquiries. Likewise, in computing, sigmoidal functions have played the important role of “activation
functions” of processing elements in artificial neural networks.

In the previously mentioned studies, the sigmoidal curves are tied to specific algebraic func-
tional forms (“equations”) arising as a solution to certain differential equations. The analysis in this
chapter significantly differs from the literature in that the S-curves studied herenotdescribed
in algebraic terms. The curves are described geometrically, and the analysis follows from properties
derived from their shape.

This chapter focuses on the maximization of the rdtir) /x, for any real-valued, univariate
function f having the specified sigmoidal shape. This ratio may admit different interpretations de-
pending on the context. For examplexit) is associated with the “logistic growth” of certain
process, the ratifx(t) — x(0)]/t, the average growth rate at tiighas the form of the ratio be-
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ing studied here. More concretely, many radio resource optimizations of practical interest depend
critically on the maximization of an expression of the fofifx) /x. The specific function and its
argument depend on the problem being analyzed;fhigt typically, monotonic, and can be as-
sumed to be a member of the family of “S-curves”, for reasons given in chapter 1. Some specific
applications are mentioned in chapter 1, and are discussed in detail in subsequent chapters.

It has also been mentioned in chapter 1 that problems involving the optimization of ratios of
functions arise naturally in many contexts, and have been intensively studied in the last few decades,
under the name “fractional programming”[5]. But, the sigmoidal functions studied here are ex-
cluded from the current fractional programming literature, because, by definition, they are neither
concave nor convex.

This chapter analyzes the “context-free” maximization of the rétig /x for any functionf
having the specified sigmoidal shape, and characterizes the optimal solution strictly in terms of geo-
metrical properties derived from this shape. Specifically, without imposing any particular algebraic
functional form on the considered functions, this chapter shows that, under the assumptions herein,
the solution to this maximization problem exists, is unique, and can be graphically described and
determined. Additionally, the ratib(x)/x is shown to be quasi-concave.

Below, the considered class of functions is formally characterized. Then, the solution to the
maximization problem of interest is derived. Subsequently, the quasi-concavity of the ratio is estab-
lished. Finally, some closing comments are given. Appendix A reproduces or fully develops certain
key technical results.

2.2 Formalization of the functions of interest

2.2.1 Basic Assumptions

Figure 2.1 provides a graphical illustration of a function representative of the class of functions to
be considered. Any such functioh, has the following characteristics:

1. Its domain is the non-negative part of the real line; that is, the intédyal)

2. Itsrange is the intervd0, B) , where, for convenience, and without loss of generality, we take
B=1.

3. Itis increasing.
4. (“Initial convexity”) It is strictly convex over the interva0, x¢ |, with X; a positive number.

5. (“Eventual concavity”) It is strictly concave over any interval of the fdun L], where L is a
positive number greater tham

6. It has a continuous derivative.

Notice thatno assumptions about the second derivative of the fundtiare explicitly made.
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Figure 2.1: A representative function and some of its tangents
2.2.2 Immediately Implied Characteristics

1. Assumptions (1), (2) and (3) imply th&t0) = 0.

2. Assumptions 4 (“initial convexity”) and 5 (“eventual concavity”) imply that the function is
continuous for anyx > 0. (See Theorem 1.3, Chapter Ill, in reference [2]). And this implica-
tion, together with the preceding one further imply tthas continuous overall.

3. The “initial convexity” assumption 4 and the continuous derivative assumption 6 together
imply that f’(0) < o (See subsections A.2.1 and 2.3.2.1). This ensures thatdifr{x) /X is

finite, by L'Hopital rule

4. Assumption 6 also implies the continuity 6f.

2.3 Maximization

Below, the following optimization problem is solved:

Max: f(x)/xsubjectto < x <M
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2.3.1 An interior solution

First, it is presumed that a “stationary” point exists within the allowable range of

2.3.1.1 First-order conditions for a maximum

The first-order necessary conditions are:
f(x) —xf'(x)=0 (2.1)

It will prove useful to observe that the equation of a straight line tangent, at the(ggirfitx;)), to
the curve described by the graph of the functfocan be written as

gr(x) = f(xe) + f'(xa) (X —X1) Or ga(x) = b(x1) + f'(x1)x (2.2)

whereb(t) := f(t) —tf’(t) represents the ordinate at the origin (y-intercept) of the straight line
tangent at the poinft, f(t)) to the curve described by the graph bf(see fig. 2.1). Therefore,
equation (2.1) can be statedl®s) = 0, which is discussed further in section 2.3.1.5.

2.3.1.2 Existence of a Solution

A solution to equation (2.1) always exists. This follows from these facts:

i) b(x) = f(x) —xf'(x) is a continuous function.

i) For sufficiently largex., b(x.) >0

iii) For any xy in (0,X¢], b(xy) < 0.

Statement (i) follows directly from the fact that boflix) and f’(x) have been assumed to be
continuous.

Statement (ii) is a direct consequence of the fact that, by assumptign,Jifitx) = 1. Hence,
in the limit, the tangent line to the graph ofis the liney = 1. The y-intercept of this line is, of
course, 1. So, lign, b(x) = 1, for whichb(x) is bound to take on positive values “sooner or later”.

Statement (iii) follows from the essential property of tangent lines of continuously differentiable
strictly convex functions (see section A.2.1). Over the intef@at;], f is assumed to be strictly
convex. Takinge; = 0 andx; equal to an arbitrary number (9, x¢], denoted asg,, inequality (A.3)
yields f(0) > f(xy) + f'(xy) - (0—xy) or, equivalentlyp(x,) = f(x,) —x, ' (%) <O.

Statements (i), (ii), and (iii) above have been shown to be valid. These three facts imply the
existence of ax*satisfyingb(x*) = 0, because a continuous function cannot go from a negative to
a positive value without taking on the value zero.

Furthermore, notice that the validity of statement (iii) immediately implies that any>Snuinst
be greater tham; (that is, any suchx*must be in the interval over which is concave), since,

X < Xt — b(x) < 0.



16

2.3.1.3 Uniqueness of the solution

In subsection 2.3.1.2 it was established that any solutidaixp= f(x) —xf’(x) = 0 must must lie
inside the interval wher¢ is strictly concave. The unigueness of this solution follows directly from
the “monotone intercepts” corollary, presented in subsection A.2.2. This results indicatexthat if
andxp are points in an interval of the real line over which the functfois strictly concave, then
X2 > xqimplies thatb(x) > b(x1). Hence, ifx*is such thab(x*) = 0, anyx # x*must be such that

b(x) #0

2.3.1.4 Optimality of the solution
The derivative of the ratid (x) /x can be expressed as

f'(x) — f b
X160 _ bt 23

with b(x) as previously defined. The derivative is well-defined with the possible exception of the
boundary valuexc= 0. The casex = 0 is discussed in the subsection 2.3.2. For the purposes of this
sectionx is assumed to be positive.

The monotone intercepts corollary of subsection A.2.2 specifies that fok any®, b(x) >
b(x*) = 0. Therefore, the ratid(x)/x is strictly decreasingor anyx > x*.

The same argument leads to the conclusion that the féti/x is strictly increasingfor any
Xf < X< X"

In subsection 2.3.1.2 it was established ti{a) < 0 for anyxin (0, x:]. Therefore, the derivative
of the ratio f (x)/x is positive for any suclx, (see equation 2.3 above), which means this ratio is
increasing ove(o, Xt].

In conclusion, the ratid (x) /x is less tharf (x*) /x* for any positivex # x*.

2.3.1.5 Description of the solution: The characteristic tangent

The solution to the first-order necessary optimizing conditions given by equation (2.1) can be di-
rectly identified in the graph of the function Only one positive values*, satisfies equation (2.1).
(x*, f(x*)) is the only point at which a line tangent to the curve describing the function passes
through the origin. Thus, the equation of any such tangent ligg(ig = f'(x*)x . (See the tangent
line drawn atx* in fig. 2.1). This tangent line is termed “tleharacteristic tangent’of a given
sigmoidal function. Of course, different sigmoids may have the same characteristic tangent.

The value of the objective function at the solutiai, can be obtained graphically as the slope
of the characteristic tangent, which f§x*) /x*. This observation can be useful for conceptual
“sensitivity analyses”. The effect on the optimal solution of changing one sigmoid for another (for
example via a change in certain parameter) immediately manifests itself, visually, through the new
characteristic tangent, and its slope.
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2.3.2 “Boundary” solution

The development so far has ignored the constraintxhatM for someM. Below, this issue is
addressed. Before that, the possibility that the optimal value be zero is formally discarded.

2.3.2.1 The non-optimality of x=0

By construction, and the application of L'Hopital rule, liny f(x)/x = f/(0) < o . In sub-sections
2.3.1.2 and 2.3.1.4 it was discussed why the rdtiw)/x is increasing over the intervaD, xs].
Hence x = 0 isnotthe maximizer.

2.3.2.2 The global optimality of the smallest oM and x*

Given the discussion in subsections 2.3.1.4 and 2.3.2.1, it is clear that thé(rgti® is increasing
over the interval0, x*], wherex* is the only value ok satisfying the first-order necessary optimizing
conditions given by equation (2.1). Hence, if the maximum allowable valug, fdenoted a$/,

is less thanx®, f(M)/M is the highest achievable value for the rafiex) /x. But if X* is less than
M, x = X* is clearly the optimizing choice. Therefore, the smallest of the nunidesadx* is the
global maximizer.

2.4 The Quasi-concavity off (x)/x

In the preceding development, it has been determined that, for the class of functions under con-
sideration, the ratid (x)/x is “single-peaked”; that is, there is a numbeérsuch that this ratio is
strictly increasing for alk € [0,x*) and strictly decreasing for alle (x*, ). This implies the quasi-
concavity of this ratio. For a general discussion about quasi-concavity and various related concepts
and results, see [27].

Below, the definition of quasi-concavity is given, and the compliandgf/x with this defini-
tion is formally established.

2.4.1 Definition of Quasi-concavity

Definition The functionh: | — R, defined on an intervdlC 0 , is said to be quasi-concave if its
upper contour setsx{€ | : h(x) > t}, are convex sets; that is, for aty (1, anya € [0,1], and any
X1,%2 € I, h(xg) >t andh(x2) >t imply that

h(axs+ (1—a)xp) >t (2.4)

The functionh is said to bestrictly quasi-concave if the implied inequality in (2.4) holds strictly
wheneverx; # x; anda € (0,1).
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2.4.2 \Verification of Quasi-concavity

The functionf (x) /x is strictly quasi-concave.

Proof:

For notational convenience, letx) = f(x)/x and leth(x*) = P*.

Lett € (0,P*). Notice that verifying (2.4) is trivial fot outside this interval.

Suppose & x1 < X2, h(x1) >t andh(xx) >t

Becausén(x) is continuous and strictlincreasingin the interval[0, x*), there is an¢ such that
h(x) > t for all x betweernx andx*, andh(x) <t for x < x. Likewise, sincen(x) is continuous and
strictly decreasingn the interval(x*, ), there is an{’ such thath(x) > t for all x betweenx*and
X', andh(x) <t for x > x".

Then, clearly, any for which h(x) >t must be betweer andx/, and anyx betweernx andx/
is such thah(x) >t . Thatis,X <x<x < h(x) >t.

Thereforeh(x;) >t andh(xp) >t impliesx <x3 <X <X/’

And fora € (0,1), X3 < ox1 + (1—a)x2 < X2. This impliesx < ax; + (1—a)x2 < X', which
further impliesh(ax; + (1 —a)x2) >t

Q.E.D.

2.5 Discussion

The maximization of the ratid (x)/x for any functionf having a “sigmoidal’ shape has been
studied, and its optimal solution been characterized without imposing any particular algebraic func-
tional form (“equation”) on the considered functions. “Sigmoidness” has been captured in a strictly
geometric manner, by assuming that the considered functions “start out” convex at the origin, and
“smoothly” transition to concave as they approach a horizontal asymptotegddmsetricconstruc-

tion had not been found in the scientific literature, although sigmoidal functions have been studied
in numerous contexts, including in technological, biological and socio-economic environments. On
the basis of geometrical properties derived from this shape, this note shows that the solution to the
maximization problem of interest always exists, is unique, and can be graphically described and
determined.

The graphical identification of the solution could be valuable as a conceptual tool to understand
the meaning of the solution, as well as a “sensitivity analysis" tool, to visualize how a change in the
considered function can impact the optimal solution.

Central to the development and fully developed herein, the observation that the “y-intercepts”
of concave and convex functions are monotonic may be useful beyond the particular aims of this
work.

Along the way, the ratidf (x)/x has been shown to be quasi-concave, which is by no means
obvious given the arbitrary sigmoidal shape of the function in the numerator. This fact can be
beneficial in situations in which this maximization is embedded into a larger problem, as in the
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“game” discussed in chapter 3 and in references [6, 20, 33], where certain important results ( such
as Debreu’s “general equilibrium” theorem) can be invoked because of the quasi-concavity of this
ratio.

Through the remainder of this work it will be made clear that the maximization of a ratio of the
form f(x) /%, with f some “S-curve”, is particularly relevant to several important problems involving
resource management for data communication over a wireless medium. This includes decentralized
power control, power and data rate assignment for maximal network throughput in a 3G-CDMA
context, and resource management for scalably-encoded visual information, as with the JPEG-2000
and MPEG-4 standards.
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Chapter 3

Robust Modeling for Wireless Data

3.1 Introduction

Several recent scholarly publications, following an approach suggested by Ji, [12], recognize that
algorithms useful for engineering applications can be obtained via the formulation of radio resource
management issues, in particular power control in wireless data applications, on the foundations of
microeconomic theory (References [6] and [20] are recent surveys of this literature). This approach
is centered around the notion of a quality-of-service (QoS) index, often referred to, by analogy with
economics literature, as a “utility function”, defined as a real-valued function of certain physically-
significant quantities. Algorithms are designed seeking the maximization, under appropriate rules
and constraints, of the utility of each transmitter.

Utility maximization in a practical setting needtinvolve a human user instantaneously choos-
ing utility-maximizing levels of resources during transmission. Rather, it may be implemented by
software inside transmitting terminals. Depending upon the service agreement, a human “customer”
may or may not have control of the embedded program. This observation is important because an
inappropriate QoS index may lead the terminal to behave in a manner inconsistent with human
intelligence.

Utility maximization, like other radio resource optimizations of practical interest, depends crit-
ically on a function giving the probability of the correct reception of a data packet in terms of the
signal-to-interference ratio (SIR) at the receiver. This “frame-success” function (FSF) is determined
by physical attributes of the system, including the modulation technique, the forward error detection
scheme, the nature of the channel, and properties of the receiver, including its demodulator, decoder,
and antenna diversity, if any. It may be prohibitively difficult or impractical to obtain and/or work
with an exact expression of this function. Therefore, functions corresponding to highly simplified
situations are often utilized in analytical studies. Regrettably, the obtained results may only be valid
for the rare situations for which the assumed functional form is appropriate.

In view of the above, it is highly desirable that analytical studies be based on generalized frame-
success/utility functions, whose assumed characteristics match most realistic situations. Results
obtained on the basis of such “generic” functions would then be robust, in the sense that they would
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apply to a wide variety of physical layer configurations and practical situations.

Perhaps the only non-trivial feature which can be assumed to match most, if not all, frame-
success functions of practical interest is “sigmoidness”; that is, the graph of any such function is
S-shaped. Below it is assumed that the frame-success furfgtimfninterests obeys the technical
properties of the generalized S-curve discussed in greater detail in chapter 2.

Another critical issue is specifying an appropriate utility function, which is the QoS index whose
maximization is assumed to be sought by each user. Below, after discussing other such indices
available in the literature, thearnedthroughput-to-power ratio (ETPR) is discussed. As a QoS
index, the ETPR is shown to exhibit good mathematical behavior, be physically significant, attain
or surpass the intuitive appeal of related measures already accepted by the scientific literature, and,
perhaps more significantly, be defined for arbitrary frame-success functions of practical interest. In
chapter 4, a game in which terminals with dissimilar data rates choose transmission power seeking
to independently maximize their respective ETPR is analyzed.

3.2 A Generalized “frame-success” function (FSF)

It is assumed that the functidiy, which gives the probability of the successful reception of a trans-
mitted data packet in terms of the signal-to-interference ratio (SIR) at the base station, is such that
the related functiori defined byf (x) = fs(x) — fs(0) obeys the general properties of the generalized
sigmoidal function discussed in 2.2. It is further assumed thé&nd hencef) has a continuous
second derivative.

Figure 3.1: A typical “corrected” frame-success function and its “critical tangent”
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3.3 Early QoS indices for wireless data

3.3.1 The Intuitive Index and Its Problem.

The ratio of a terminal’s throughput to the power employed by it was introduced in [48] in an
analysis of re-transmission schemes of data packets. Specificaliy(fetlenote the frame success
function, andy the received SIR. The TPR is proportional to the quarf&ty(y)/P, whereP is

the transmission power of the concerned transmitter, Ruitd transmission rate. This yields a
physically significant measure in bits per Joule of considerable appeal as a user’s quality-of-service
index. Below, a development leading to this measure “from first principles” is given. But, generally,
fs(0) > 0, which implies that the TPR grows without bound as the transmission power approaches
zero.

The zero-power issue can become a practical problem. The implementation of utility maximiza-
tion in a practical setting may take the form of an algorithm, not necessarily controllable by a human
operator, possibly embedded into a transmitting terminal. Thus, the misbehavior of the TPR near
zero could drive the algorithm toward arbitrarily small transmission power levels, or no transmis-
sion at all, in situations where such behavior would be inappropriate. To counter this, the algorithm
would need to be endowed with additional “intelligence”, which would increase its computational
complexity.

3.3.2 The Efficiency Function remedy and its problems.

Reference [35] and the literature that followed it replaced the frame success function in the numer-
ator of the TPR with an “efficiency functionf¢(y), which gives (as a function of the SIR in the
received signal) a “measure of the efficiency of the transmission protocol” [35]. Then, they defined
the utility function as proportional to the rati®f:(yi)/P.

But fo was only specified, agl — 2BER(y;))M, for frame-success functions of the simple form
(1- BER(w))M (BER denotes the bit error rate). Moreover, there is no clear physical or probability
interpretation for this function, nor for the utility function obtained from it. Furthermore, power
control algorithms designed with this efficiency function can be highly suboptimal (of the order of
18 to 1 in a specific example) [31].

3.4 The ETPR: An Improved QoS Index

3.4.1 A QoS Metric from First Principles

The development of a QoS index from first principles may provide some additional valuable insights
into this issue, and is done below.
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3.4.1.1 Decision Scenario

It is assumed that the underlying communication technology is CDMA, although the general ap-
proach could be extended to other technologies (one can set up the analysis in terms of the familiar
ratio Ep/No; that is, energy-per-bit over “noise”). Specifically:

Given:

A certain amount of energ¥;, available for transmission

A fixed transmission rate d® bits per second

A long sequence of blocks of bits (“frames”) of lengdih containingL; < M; data bits (plus
“overhead”).

¢ A certain fixed level of interference (noisé),
e A frame-success functiofy as described in section 3.2.

the transmitter wants to choose its transmission power in order to satisfy a reasonable optimality
criterion. The transmission power will be set at the start of the transmission, and held constant until
energy runs out.

3.4.1.2 Performance for a Fixed Power Level

Since only one terminal is being considered in this development, the subisizrigtopped. Let
Q= P-hbe the power at the receiver when a certain data packet is transmitted with pcavet let

| be the interference (noise) power. Thég(GQ/1) is the probability that said packet is correctly
received.G is the spreading (processing) gain, defined as the ratio of the channel’s “chipRate”,
to the transmission bit rat&.

Assuming that, once a packet is received in error, re-transmission is ideal, then the total number
of times a given packet needs to be transmitted, including re-transmissions, is a geometric random
variable, whose probability distribution is of the fomfil — )%~ with = fs(GQ/1). The expected
value of this random variable is/f1, interpreted as the average number of times the same packet
needs to be transmitted to ensure correct reception.

The average amount of energy that needs to be spent in order to achieve the successful reception
of a data packet when transmission power is se twan be obtained as follows. Each packet
requires an amount of energy equal to the produd times the length in time of a packet (given
the transmission rat®) times the average number of times the same packet needs to be transmitted
to ensure correct reception. Each bit lastR $ecs, so ead-bit frame lastdvl /R secs. Therefore,
the average amount of energy required by a packét-igM /R) - (1/m) =PM/(1R). Thus, with
transmission power fixed &, the average number of information bits which can be successfully
transmitted with an energy buddetis then (assuming all variables are continuous)

E+— )|=ER-——-—=E—

PM L _ L Rf(GhP/)
L< nR) MP- M P (3.1)
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3.4.2 A Refined energy-expenditure criterion

The preceding analysis has led naturally to the throughput-to-power ratio, TPR. It is tempting to
assume that the terminal should choose its power in order to maximize this index, which would result
in the maximal average number of bits transmitted before energy runs out. But it has already been
discussed that doing so leads to technical difficulties of both theoretical and practical importance.

3.4.2.1 Throughput: Earned vs. Serendipitous

In order to prevent the technicalities in question, while preserving the physical meaning and prob-
ability interpretation of the relevant quantities, one must distinguish between two additive com-
ponents of the throughput: the earned throughput, and the serendipitous (trivial) throughput. The
earned throughput is the result of the expenditure of transmission power. On the other hand, the
serendipitous throughput is that obtained without power expenditure, due to serendipity (a detec-
tor’s wild guesses), which yields a correct detection of a packet with a probability*hf 2

3.4.2.2 An appropriate criterion

An appropriate objective for the terminal is to choose its transmission power in order to maxi-
mize the ratio of theearnedthroughput derived by a transmitter to the transmission power, or the
earned-throughput-to-power ratio (ETPR). This results in the maximal average nundsenet
successfully transmitted bits before the available energy is exhausted.

Specifically, if fs(y) gives the probability that a packet sent by terminial correctly detected,
when its SIR at the base stationyis- GhP/I, then the ETPR (“utility”) of terminal is defined as:

ETPRY) = fs(y) — 1(0) fory>0 (3.2)

P
ETPRO) im ETPRY)

If one wishes to make the range of the numerator equal to the int€ni&l one can divide the
ETPR by(1— f5(0)). Likewise, by multiplying, as in the original index, by the data faf@ne ob-
tains a physically meaningful QoS index in bits per Joule. However, in the subsequent development,
the scaling constants are ignored.

3.4.3 Technical behavior of the ETPR

As long asG, h, andl are fixedk := Gh/I is a constant. Thus, maximizirids(GhP/1) — f5(0))/P

is equivalent to maximizindk( fs(kP) — fs(0))/kP , or simply maximizing( fs(x) — fs(0))/x with

x:= kP = GhP/l. Much relevant information about the technical behavior of the ETPR can be
found in chapter 2, which discusses the “context-free” maximization of the fétig'x, with f an
arbitrary function with an S-shaped graph, as discussed in section 3.2. Chapter 2 shows that this
ratio is quasi-concave, and admits a unique global maximizer. The maximizer can be graphically
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identified in figure (3.1) ag*, the abscissa of the only point at which a line tangent fgasses
through the origin. Below, the behavior of the ETPR around 0 is of special interest.

The generalized frame-success function being considered is strictly convex over the interval
[0,x¢], with X a positive number. It is well-known that the continuously differentiable function
fs: 1 — Rdefined on an intervdl C O is strictly convex if and only ify'xi, x> € 1,

fs(x2) > fs(xa) + fs(xa) - (X2 —x1)
Takingx; = 0 andx; equal to an arbitrary € (0, x:], the preceding inequality yields
fs(x) > £5(0) + 75(0) - (¥) (3.3)

This inequality, (3.3), immediately implies that f§ “starts out” convex, as assumef]{0) must
be finite. And a simple application of L'Hospital rule shows that the ETPR (see equation (3.2))
goes tokf{(0) when its argument goes to zero. Therefore, as lonfs &ss the assumed shape,
ETPRO) =limy o ETPR) is finite. Furthermore, inequality (3.3) can be re-writterkéf(x) —
fs(0))/x > kf{(0). The left hand side of this inequality is the ETPR evaluated(atjuation (3.2)),
and the right-hand side is ETPR(0). Thus the ETPR is actumitymizedat O, and, for the as-
sumed family of frame-success functions, an ETPR-maximizing algorithmrmeslerchoose 0 as
the maximizer.

It is interesting to note that ifs were a function which “starts out” strictlponcavejnequality
(3.3) would be reversed, and could be written( &gx) — f5(0)) /x < f{(0) for anyx < x¢. In that
case, zero would be, indeed, a (localximizerfor (fs(x) — f5(0))/x.

3.4.4 Discussion

In most, if not all, practical systems, the serendipitous throughput is negligible, and so is the dif-
ference between the earned-throughput-to-power ratio (ETPR) and the (total) throughput-to-power
ratio (TPR). However, the mis-behavior of the TPR for low transmission power is of theoretical and
practical importance, as has already been explained.

By contrast, the ETPR is well-behaved throughout its entire domain. Not only does this fa-
cilitate mathematical analysis. It also means that an ETPR-maximizing algorithm will not choose
an unreasonably small transmission power because of the technical misbehavior of the objective
function. This additional reliability comes without any significant complexity cost.

Intellectual curiosity may lead one to consider which one of these two ratios, regardless of the
technical issue at the origin, come closer to an ‘ideal’ QoS index. The TPR divides the average
amount of data successfully transmitted (per time unit) by the energy spent (in each time unit). This
yields a sensible measure in bits per Joule which is appealing as a guide for energy-expenditure
decisions. On the other hand, the ETPR compares the amount of energy spent (in each time unit), to
the average amount of data (per time unit) the transnitiatd not have deliveredithout energy
expenditure. Hence, the ETPR, in fact, reflects a refinement of the intuition leading originally to
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the TPR. As it turns out, this refinement solves a problem of practical and theoretical importance,
without exacting any significant cost.

Finally, one may wonder why the transformation leading to the ETPR, which may superficially
seem ‘obvious’, was not made in earlier works. A plausible answer is that, if some increasing
functiong is such thag(0) > 0 which makegy(x)/x go to infinity asx | 0, the transformed ratio
(g(x) —g(0))/x may alsogo to infinity asx | 0. An example of this ig(x) = /x+ 1, for which
(g(x) —9(0))/x = 1/4/x which clearly goes to infinity ag | 0. In fact, it was shown in section
3.4.3 that for any functiolg which “starts out”concave,(g(x) — g(0))/x indeed reaches a (local)
maximum at zero! One has to invoke the “initial convexity” of the frame-success function in order to
show that an ETPR-maximizing algorithm will not converge to zero. Interestingly, all this implies
that if a communication channel is ever found wittc@ncaveframe-success function, then an
ETPR-maximizing terminal should decline to use this channel.
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Chapter 4

Efficient Decentralized Power Allocation
via Mechanism Design

4.1 Introduction

Several recent scholarly publications, following an approach suggested by Ji, [12], recognize that
algorithms useful for engineering applications can be obtained via the formulation of radio resource
management issues, in particular power control in wireless data applications, on the foundations
of microeconomic theory. This approach is centered aroundécentralizednaximization, un-

der appropriate rules and constraints, of a quality-of-service (QoS) index, referred to as a “utility
function”. This maximizatiormay or may not involve a human user choosing resources during
transmission. The choices may be made by “software agents” inside transmitting terminals. These
agents may be entirely programmed by the network administrator, so that they behave in the best
interests of the network. Or these agents may be controlled and/or tuned or trained by the actual
human operator.

In either case, decentralized QoS maximization can be modeled as a “game”: a situation in
which each of several “selfish” agents choose a “strategy” in order to maximize its own “payoff”.
Generally, the payoff to a given player depends on the chosen strategies by all players. For instance,
in a wireless network, the transmission power chosen by a terminal becomes interference for others.
And this interference affects the payoff/utility (QoS) of all terminals.

Below, a game in which each data transmitting terminal maximizes the QoS index introduced in
chapter 3 is studied. This index is tearnedthroughput-to-power ratio (ETPR), which was shown
to exhibit good mathematical behavior, be physically significant, and attain or surpass the intuitive
appeal of related measures already accepted by the scientific literature. The data rates are fixed but
may be different among the terminals.

A key solution concept is a Nash Equilibrium (NE); i.e., an allocation (a strategy per player)
such that no player would be better off lilaterally “deviating” (changing strategy). In this
game, a NE specifies a power level per terminal, such that no terminal would increase its QoS index
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by unilaterally adjusting its power. It is made clear below, that, if transmission power is limited, a
Nash equilibrium does exist. And even if power is unlimited, a Nash equilibrium may exist under
certain circumstances. However, NE tend to be “inefficient”, which is verified in this case. The
challenge is to get selfish terminals to move toward a more efficient operating point “on their own”.

An approach to guide competing selfish entities toward a “socially optimal” outcome is to design
an appropriate set of “rules of interaction”; i.e., a set of procedures, penalties and rewards designed
to guide the entities toward a desired operating point. In order to achieve an efficient decentralized
allocation of power among mutually interfering terminals, this chapter proposes the application of
a relatively simple mechanism introduced in [43]. In order for this mechanism to work, there must
exist one “transferable good” with which terminals can compensate each other. This good could be
money, or some form of service credits, such as time of usage (“minutes”).

Below, first, the system model is built. Then, the game in which each data transmitting terminals
chooses its transmission power in order to maximize its QoS index, without any mechanism present,
is analyzed. Subsequently, it is shown by two methods that the NE of this game is “inefficient”.
Finally, the compensation mechanism is introduced and discussed.

4.2 System Model

This work discusses the application of a mechanism (a set of rules for the interaction of some
“players”) to guide some mutually-interfering data-transmitting terminals to an “efficient” allocation
of power. The mechanism could be applied under many physical layer configurations, and multi-
access schemes. For simplicity, this work focuses on a single CDMA cell.

In this simple model, the following quantities and/or concepts are of interest:

i) N is the number of terminals transmitting data simultaneously to the base station. For most of
the development\ = 2 is assumed. Extensions are discussed at the end.

i) Ry bits per second is the source data rate of terminal

iii) R chips per second is the chip rate (“bandwidth”) of the channel

iv) Gi = Rc/R; is the processing gain of terminal

vii) fs(Gja;) is the probability of correct reception of a data packet, whgris the carrier-to-
interference ratio (CIR) of the receiver tuned to transmittand is defined by:
__ A Qe @ (4.1)

Y Pihj+0? Q0% i
J# J#

ai

In this expressiorR < Ppaxis the transmitted power of terminialh; is the path gain from terminal
i to the base station, arw is the noise power in the base station recei@r= Ph; is the received
power at the base station in the signal transmitted by termin&or notational conveniencé,
denotes the total level of interference experience by terminal

viii) Absent of other incentives, the earned-throughput-to-power ratio (ETPR) discussed in
chapter 3 is the quality-of-service (QoS) index whose maximization is desired by each terminal.
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It is obtained as :

R (L/M) (fs(Giai) — f5(0)) . Re <|—> h f(Giaj)
R M GiQ
L/M is the ratio of the number of information bits in a data packet to the total number of bits in the
packet.f(x) = fs(x) — fs(0) has been setig(0) is typically very small, but, as discussed in chapter
3, this correction is necessary to avoid technical and practical problems.
It is assumed thaall that is knownabout f is that its graphs has an “S-shape”, as shown in
fig. 3.1. This should accommodate most physical layer configurations of practical interest. The

technical characterization of a function with an “S-shaped” graph is discussed in chapter 2.

4.3 Decentralized ETPR Maximization: No Mechanism

4.3.1 Objective Function and constraints

For a given level of interferencd; , terminali wants to choose its transmission powgr,, to

maximize: G f(GQ/) F(x 0
20 22N o simpl —XwithxiG-—i 4.2
i GiQi/li Py~ il (4.2)
subject to:
Gi Gi

0 < x < X With Xy, = TQM‘ = Thi Pmax
[ [

4.3.2 Best Response Function

As discussed in section 3.4.3, the maximization of the r&tig /x for function f as described in

section 3.2 is well understood. Chapter 2 shows fi&}/x is quasi-concave, and admits as unique

global maximizew*, which is the only positive number satisfyind’(x) = f(x) (see figure (3.1)).
This implies that the maximizer sought in the problem of section 4.3.1 is the smallegtaofd

X*. Letx® = min(x*,xy, ). It follows that, for a given interference levig] transmitteri will respond

with a P* such that

QI* = —Ixi* =min <i_X*, hi Pmax) (4.3)

4.3.3 Nash-equilibria

In this context, a Nash equilibrium is a power vector, specifying a power level for each active
terminal, such that no terminal can increase its quality of serviamibgterally changing its power
level.

The preceding development indicates that the “best response” of each terminal is such that, for a
given interference level, each would like to set its transmission power to achieve a “received” signal-
to-interference ratio ok*, a constant determined by the physical layer through the frame-success
function. When a terminal cannot reach the power level leading,td transmits at the highest
possible power level. However, the interference level is not a fixed constant, but rather, a variable
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determined by the transmission power levels of all active terminals. Thus, itis, in principle, unclear
whether an equilibrium power vector will exist.

It can be shown on the basis of a well-known result by Gerard Debreu that, if transmission
power is limited and utility functions are quasi-concave (which the ETPR is), a Nash-equilibrium
does exist (see [33] for further details). Nevertheless, below the conditions for the existence of
Nash-equilibria of various forms (with and without transmission power limits) are explored “from
first principles”, without explicitly invoking Debreu’s or similar results.

4.3.3.1 Equal-received-SIR Nash equilibrium (ERSNE)

This section seeks conditions under which a solution exists for a éegtiations of the form:

Q _ Qi X
7Y Q+0? G
J#i
This problem is fully discussed in appendix B. The equations definingijteéequation (4.4)) lead
to a system of equations:

(of (4.4)

1 —ap -+ -0 Q1 ap
—-az 1 - -0 Q2 az
— " (4.5)
—ay —on - 1 On ON
Then, one can show that if the condition
N N *
a X
K (4.6)

Si= = <1
kzll-l-(lk & X+ G

is satisfied, the system (4.5) has a unigue solution, in which each component of the received power
vector is given by:

2 2

_0° o O X
1-sl4oax 1—sx+Gy

Qk (4.7)

Evidently, if all G;’s are identical, them; = o = x*/G := 1/G, and the feasibility condition given
by (4.6) reduces to:

Na N
s=——=-—<1 4.8
1+a G+1 (48)
Likewise, equation (4.7) becomes:
o? )
*— —_— = N,()- 4.9
=gy~ Q0% (4.9)

This development leads to the following conclusion about the feasibility of the ERSNE. In order
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for the ERSNE to be feasible, condition (4.6) must be satisfied. When this condition is satisfied,
equation (4.7) gives the levels of received power which would lead the terminals to the desired SIR,
x*. Therefore, the ERSNE may fail for either of two reasons: failure of condition (4.6), or inability
by any terminal to reach the required power level. In either case, the possibility that a non-ERS
equilibrium exists needs to be explored.

4.3.3.2 ERSO0MP-1 Nash Equilibrium

This section explores conditions under which a Nash equilibrium exists in which one terminal op-
erates at maximal power, while all others operate at whichever power level is necessary to achieve
the optimal SIR of*. This case will be identified as an ERSoMP-NE-1 for an equal-received-SIR
or maximal-power Nash equilibrium of order 1.

For expositional convenience, it is assumed that ternfihéd the one operating at maximal
power. In this scenario, the received power from termiaDy, is presumed fixed diyPmax:= (5N,
while others need to be found to satisfy :

I S S
1 tQi+22 G
i

o] (4.10)

wheres2:= Qy+02 . Fori=1...(N—1) the value of eachy; is the same as in the original
equation (4.4).

Evidently, the equations of the form (4.10) lead to a system analogous to (4.5), except that it is
of orderN — 1, and>? replacess?. From the development leading to condition (4.6), the feasibility
condition for the solution of this new system is:

N-1 Ok

S = <1
1 k;1+ak

(4.11)

Likewise, if inequality (4.11) is satisfied, a unique solution exists, in which theNirstlL compo-
nents of the received power vector satisfy:

32 (0%
1 st 14+ ag
Notice that if inequality (4.6) is satisfied, so is inequality (4.11). But the converse is obviously not
true.

Again, if Vi, o = X" /G = a, the feasibility condition given by (4.11) reduces to:

Qk

(4.12)

_a(N-1) N-1_

= = 1 4.13
l+a G+1 ( )

and equation (4.12) becomes:

0 — 32 a  Qu+to?
K"1-s114a G-N+2

(4.14)
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Even if the new feasibility condition (4.11) is satisfied, and each of the terminals fronN1-td

can reach the required power level (4.12), the possibility that this allocationnmidye a Nash
equilibrium needs to be explored. According to the development in section 4.3.2, the best-response
function of terminalN is given by equation (4.3) &3y, = min (%,@,) This means that iﬁN >

IN/G, terminalN would be better off by lowering its power, and the allocation being considered
would fail to be a Nash equilibrium. This possibility is explored below for the identical-rates case.
The extension of this procedure to consider nonidentical rates is straightforward.

On the basis of equation (4.14y, can be obtained as

. 2
o
|N:m—n£@i—ﬁﬁz

4.15
G-N+2 ( )

In order to ascertain whethé@N < I, this inequality can be expressed as

— /. N-=1 \ 2 N—1
QN< G—N+2> <G—N+2

or, sinceG — N + 2 > 0 by condition (4.13), as

QGG -N+2)—N+1] < (6+1)0?

Notice thatG(G — N+ 1+ 1) — N+ 1 can be written a&(G — N + 1) + (G — N+ 1) which can be
factored a§G+ 1)(G — N + 1). This leads to checking whether,

NE-N+1) & 02 (4.16)

If condition (4.8) is satisfied, which means that, without a power limitation, the original ERSNE
would have been feasible, then inequality (4.16) can be writte@nas 0%2/(G-N+1). But

the right-hand side of this inequality is precisely the received power level required for the equal-
received-SIR Nash Equilibrium (ERSNE) ( equation(4.9)). Thus, inequality (4.16) is satisfied if
condition (4.8), which determines the feasibility of the power-unlimited ERSNE, was satisfied, but
terminalN could not, because of its power constraint, reach the power level necessitated by ERSNE.

On the other hand, if condition (4.8) failed, which means that the original ERSNE would have
beenimpossibleeven without a power limitation, then the left-hand-side of inequality (4.16) is
negative which directly implies that this inequality is necessarily satisfied.

In conclusion, the ERSoMP-NE-1 exists whenever three requirements are met: (i) condition
(4.11) is satisfied, (ii) each of the terminals from 1Noe- 1 can reach the required power level
(4.12), and (iii) the ERSNE failed to exist. (For this purpose, it dugsnatter whether the ERSNE
failed because condition (4.8) failed, or because termihabuld not reach the required power
level).
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4.3.3.3 ERSO0MP Nash-Equilibrium of order M

The preceding development suggests the following extension to the more general equilibrium in
which M terminals operate at maximal power, with the remaining ones operating with received SIR
equal tox*; i.e., an equal-received-SIR or maximal-power Nash equilibrium of d'tHEERSOMP-
NE-M). As discussed in the introduction to section 4.3.3, given the quasi-concavity of our utility
function, such equilibrium exists, whenever transmission power is limited [33].

For expositional convenience, it is assumed that the terminals have been labeled sithat if
terminals cannot reach the required power level, they are termihal$/ + 1 throughN. For
instance, this will happen if both the transmission bit rates, and the maximal transmission power
levels are constant across terminals, but the path gains dagisfy- - > hy.

First, check whether condition (4.8), which determines the feasibility of the powienited
ERSNE, is satisfied, and all terminals can reach the appropriate power level given by equation (4.7).
If this is the case, then the ERSNE is the only available NE. If condition (4.8) fails and transmission
power is unlimited, themo NE is available. If an ERSNE isot possible (for whatever reason),
and transmission power is limited, then set termiNadt maximal power and determine whether
an ERSoMP-NE-1 is possible. If condition (4.13) fails, or if this condition is satisfied but one or
more of the firstN — 1 terminals cannot reach the required power level, (equation (4.12)), then an
ERSoOMP-NE-1 inot possible. Hence, set both termimdland terminaN — 1 at maximal power,
and proceed to verify whether an ERSOMP-NE-2 is possible. Continue this recursion, until an
ERSoMP Nash equilibrium of ord@4 is reached.

4.3.4 Discussion

A game in which terminals carrying multi-rate traffic choose transmission power in order to max-
imize the ETPR index has been analyzed. The key solution concept is a Nash equilibrium; i.e., an
allocation such that no terminal would be better offuylaterally “deviating”. Closed-form equi-
librium conditions and power levels has been derived from first principles. It has been shown that all
terminals want the same signal-to-interference ratio (SIR), but, because of power limitations, some
terminals cannot reach the necessary power level. At equilibrium, a number of terminals transmit
at maximal power, and the others achieve the same optimal SIR. This SIR value can be easily iden-
tified in the graph off as the abscissa of the only point where a ray emanating from the origin is
tangent to the graph (see in fig. 3.1). A basic rationale to search for these equilibria has been
given.

4.4 Efficiency Analysis of the Equilibria

441 Overview

With limited transmission power, an equilibrium always exists. And even with unlimited power,
an equilibriummayexist if certain sum of simple terms is less than 1. However, the equilibrium
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allocation can be shown to be inefficient (not Pareto optimal): there are other feasible allocations
under which the utility of some terminals could be increased without decreasing the utility of any
other. To show the inefficiency of the equilibrium, two separate arguments are given. The first
argument follows that given in [33], and concludes that if the terminals operating at the optimal
SIR lower their equilibrium power levels by certain fraction, the utilityeaichterminal increases.
Thus, equilibrium power levels are “too high”. Subsequently, an alternative way of showing that
the equilibrium power levels are inefficient based on economics theory is provided, for a 2-terminal
situation.

4.4.2 Description of the equilibrium allocation

As discussed in section 4.3.2, each terminal wants to operate witbk'&8Bex* in fig. 3.1). If
the conditions:= SR, x*/(x* + Gx) < 1 is satisfied, and power limits are sufficiently high, each
terminal can reach the received power level leading to thexSIR/hen all terminals have the same
transmission rate, this power level is, as a multiple of the noise average power,:

f(x*)

_
G/x -1

u;" is the utility derived at equilibrium by terminal

4.4.3 Inefficiency of equilibrium allocation-I

If all terminals simultaneously change their received powengtowith 0 < € < 1, then the new SIR
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Recall that fore = 1, v, = x* and f (x*) = x* f/(x*). Thus,

X*

Df(x*)<G¢—l) D(N—ll)q*+1

The fact that this derivative is negative foe= 1 implies that for some scaling factersuch that
0 < € < 1, if all terminals simultaneously scale down their equilibrium power levels,bgach
terminal would increase its utility over its equilibrium value.

ouf

—_— —-1<0
oe <

e=1
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This argument only considers a situation in which all terminals can reach the universally desired
SIR. However, [33] extends this argument to show that, even when some terminals must operate at
maximal power, if all the terminals operating at the optimal SIR scale down their equilibrium power
levels by an appropriate factor, the utility edchterminal, including those operating at maximal
power, increases.

4.4.4 Inefficiency of equilibrium allocation-Il

The first-order necessary conditions that must be met by an allocation in order to be Pareto-efficient
are the same as those of an allocation that maximizes a weighted sum of the utilities of each terminal
[42, p. 332]. Therefore, an allocation that fails to meet these conditionstiPareto-efficient.
Below, it is verified for the two terminal situation that the Nash equilibrium of the game played by
two data-transmitting terminals fails the necessary conditions for Pareto-efficiency, with the possible
exception of the situation in which both terminals operate at maximal power.

For two terminals, the centralized utility-maximization problem is:
maxy,q, Bihy I;(lyéz + Bzhz%

subjectto g1 < Q1R <0

Bi denotes an arbitrary weight, := Q; /02 and

Ga o _wvi.ov_ ¥

q+1 dq o' 09 G
The augmented objective function (Lagrangian) is:

Bihy f(y1) N Bahy f(y2)
G o G

+H1(Q1 — 01) + H2(G2 — G2)

The corresponding first-order necessary conditions for a maximum are:

Bihy yaf'(va)—f(v1) _ Boha 31'(v2)
e S S w1
_Bé.TTVE (;2%1) i %22 Yof (qu)gf(\/z) i 0
Hi(Gi — i) =0andy <0 (4.18)
For an interior solutiony; = 0, and equation (4.17) implies,
Biheyif'(ve) —f(v1) _ Beh2 3f'(v2) (4.19)
G]_ q% G2 qu%
Bohevaf'(v2) — f(v2) _ Bahu Ef'(v1) (4.20)
Gy q% G qu%

Quite clearly, a finite power vector in whigh = y, = X* cannot possibly satisfy equations (4.19
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and 4.20), becauseé f'(x*) = f(x*), which would make the left-hand side of these equations equal
to zero, while the right-hand side is greater than zéf({ > 0).

If terminal 2 was operating at the optimal SKR with terminal 1 operating at maximal power,
K2 = 0, and equation (4.20) would still apply. But again, the left-hand side of equation (4.20) would
continue to equal zero, while its right-hand side would be greater than zero. A similar situation
happens if the terminals switched roles.

Finally, with both terminals operating at maximal powgr,= q;, and the complementary-
slackness condition, equation (4.18), would requjr€ 0. First, observe that :

— . Gg Gig _ —

P BN R )
LA TES I

From equations (4.19),

Bahz V22 f'(y2)  Bihavaf'(y) — f(y1)

Ho = Gy Gyp? Gy 01°
f'(y2)  Bihayaf'(yr) — f(v1)
_ o _ /. 4.21

Notice thaty; f'(y1) — f(y1) has the sign of the derivative #ft)/t evaluated af;. Chapter 2 shows
that this ratio is “single-peaked”, and reaches its maximup.afThus, its derivative is negative
for anyt > yo. Thereforey; > yo makesy; positive. Thus, operating at maximal power when the
preferred SIRy is achievable is not Pareto-efficient, as intuition suggests. On the other hand, with
y1 < Yo, Which is really the interesting case, the second term in the right-hand side of equation (4.21)
becomes negative, but the first one remains positive. A similar analysis applies3o, this test is
inconclusive when both terminals operate at maximal power. This is intuitively appealing. If both
terminals are very poorly situated with respect to the base station, it could be perfectly reasonable
(“efficient”) for both of them to operate at maximal power.

Bihiva®f'(v1)  Bzh2Yaf'(v2) — f(v2) f'iy1)  BahaYaf'(v2) — f(v2)

= — = B1h;— -
=G, G103 Gz a3 P Y@t+1?2 G o

4.5 A Simple Efficiency-Inducing Mechanism

Section 4.4 shows that the allocation arising as a Nash equilibrium of the game in which each data
terminal chooses its transmission power to maximize the ETPR is not efficient. The challenge is to
guide the “selfish” terminals toward an efficient operating point “on their own”.

An approach employed in [33] to induce the terminals toward a lower-power equilibrium is
to introduce a “tax” on transmission power. That is, terminals are programmed to maximize an
expression of the form(p; 1) — cp, whereu(p;|) denotes the utility of the terminal when its trans-
mission power isp, and its interfering power (caused by noise and the other terminals) dquals
andc is a “tax” on power. This leads to lower power levels at equilibrium, and an increase in the
utility to the terminals. However, there are several problems with this approach: (i) while the new
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equilibrium allocation is an improvement, it is still inefficient; (ii) there is no clear and convenient
expression giving the optimal tax, and (iii) the approach may require certain additional impositions
and technical assumptions which are best avoided.

This section proposes and discusses the application of a “mechanism” introduced in [43] to
guide the terminals toward an efficient allocation of transmission power. In much of the develop-
ment below, only two terminals are considered. However, the discussion section addresses some of
the issues involved in a multi-terminal extension of this approach.

45.1 Whatis a mechanism?

A “mechanism”is a set of procedures, penalties and rewards intended to guide selfish entities toward
a desired outcome. An example of a simple, well-known mechanism is Vickery’s Second Price
Auction. In this situation, a valuable object if offered for sale to several interested parties. Each
submits a sealed bid, and the object is awarded to the highest bidder. However, the winner only
pays the second-highest bid! The key advantage of this auction is that it has been proved that each
player's best response is to bid its exact true valuation of the object, which is private information
only known to him/her. That is, in this arrangement, “truth telling” is optimal [45].

45.2 Economic Model

In order to achieve an efficient decentralized allocation of power among mutually interfering ter-
minals through the proposed mechanism, there must exist one transferable good (say money) with
which terminals can compensate each other.

The basic economic model is that of partial-equilibrium analysis and a quasi-linear utility func-
tion, as discussed, for instance in [42, Ch. 10]. Each terminal is assumed to have both an energy
budgetE;, and a monetary budgdd;. The terminal’s payoff i§;B; +y; where (i)B; is the monetary
value to the terminal of one information bit successfully transferredB{i§ the (average) number
of (“earned”) information bits the terminal gets to successfully transfer by the time its energy runs
out, and (iii))y; is the amount of money the terminal has left after compensation, and penalties are
computed.

Without penalties and rewards, the terminal keeps its complete monetary bDggittact.

Thus, the terminal’s payoff i§iB; + D;. But when a mechanism is introduced, the second term
becomedD; plus any reward/compensation received, minus any penalty/compensation paid. This
will be further clarified below.

4.5.3 The compensation mechanism

The mechanism is implemented in two stages: (i) announcement: the terminals announce the prices
cl,, ¢k, c3;, c2,, where the superscript indicates which terminal sets the price, and the subjscript
denotes that money flows fronto j. (ii) choice: each terminal chooses its power level to maximize

its payoff, given the announced prices. If the compensation offered by ternioais not match
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S\ 2
j —ci’j) to a third party. Thus, once all

what terminalj wants, terminal must pay a penalt;(cﬁ
choices have been made, the payoff to terminal 1 is :

. 2 2 1 232
B]_ Bl(P]_, PZ) + D]_ + C21P2 - C12P]_ - (Clz - ClZ) (422)
M~ —— SN = ————
$/bits "earned” bits budget from2  to2 Penalty

4.5.4 Describing the equilibrium for the asymmetric case

Reference [43] shows that the allocation arising from this game is efficient. Nevertheless, it is
interesting to describe the powers and prices arising at equilibrium. This is done below for the
special case in which terminal 1 interferes with terminal 2imivice-versa (successive interference
cancellation (SIC) decoding). In this case,denotes the unit compensation terminal 2 (“injured”
terminal) demands, ang} the compensation offered by terminal 1 (interferer). Since the injured
terminal makes no payments, it is convenient to set its monetary bDdge.

45.4.1 Second-stage payoffs

After all choices have been made, the payoffs for the asymmetric game are :

B1 Bi(Pi;l1) + D1 —CoPL—(c1 —Gp)? (4.23)
N N—— N N N———
$/bits  bits budget  to2 penalty

B2 Ba(P2l2) + 1Py — (2 —¢1)? (4.24)
A N—— SN S——
$/bits  bits from 1 penalty

As discussed in chapter 3, for a given level of interferehce,

8P - £ S HGNRA) _ o LA 1)

M P, M Ii Xi (4'25)

with x; the signal to interference ratio (SIR) at the receitet is the ratio of information bits to
total bits in a packet) . For a givdp choosing transmission power is equivalent to choosjng
With a slight abuse of notatiol; (x;, l;) can replaca; (R, I;).

4.5.4.2 Characterizing the equilibrium

4.5.4.2.1 General approach This is a 2 stage game. To solve it, one first looks at the second
stage (choosing the power levels), as if the first-stage choices had been pre-determined. This gives
power levels that are a function of andc,. With this information, the first-stage of the game

can be solved. But notice from eq. (4.23), that the choiog @inly impacts the interferer’s payoff
through the penalty tern{c, — ¢;)?. ¢; doesinfluence the power chosen by terminal 2, but this
power has no effect on the interferer’s payoff because, by assumption, terminal 1’s only impairment
is random noise. Thus, at equilibrium = ¢, because it is always optimal for the interferer to



39

avoid the penalty. Hence, in characterizing the equilibrium allocation, one can focus on the case
Cp=Cy=C.

4.5.4.2.2 Interferer's power choice By assumption, terminal 1 interferes with terminal 2 but
not vice-versa. That i$; = a2, while |, = P, + 02.
Terminal 1 will choosd?; so thatx; maximizes

L E; f (Xl) 02

— —h —C——x; =[ —¢ 4.2
M o2 P . SGh Bru(x1) — €1xa (4.26)
where for notational convenience
f(Xl) ~ L R.Eihg A CO'2
= Bri=———B1;6 1= ——
u(xq) ” B1 M o2 B1;C Gihy

Equation (4.26) has the general foufx) — cx.

4.5.4.2.3 Maximizingu(x)—cx Chapter 2 shows that fdran S-curvef (x)/xis “single peaked”,
as shown in fig. 4.1. Thus, the maximizationudk) — cx, whereall that is knownaboutu is that it
is “single peaked”, needs to be understood.

As fig. 4.1 clearly shows, i€ exceeds certain critical value,, the linecx lies entirely over the
curveu(x) except at the origin. Thusi(x) —cx < 0 for any positivex, which implies thati(x) — cx
has its maximum ax = 0. At the other extreme, i€ ~ 0, the maximum occurs at*, which, as
discussed in chapter 2, is shown in fig. 3.1 at the tangency point betfvaed a line from the
origin. For 0< ¢ < c_there is an intervala,b) on whichu(x) > cx (whenc = ¢, aandb “merge”
into x_). The functionu(x) — cx is continuous; therefore it must have a maximum over the closed
and bounded intervdh, b]. The maximum occurs at the poixt" whereu'(x) = c (that is, a point
at which a tangent to the curve is parallel to the line).

With power limitations, the terminal may not be able to exceed a certain maximad. $1Rhis
case, ifa < x < x* it is optimal for this terminal to operate a However, ifx < a the optimal
choice for this terminal is 0, sinagx) —cx < 0 for 0 < x < a. If X = a the terminal is indifferent
between choosing 0 @. In the interest of simplicity, it is assumed that when operating and not
operating give an identical utility, the terminal will choose to operate.

In conclusion, the problem of maximizingx) — cxis well defined, and has a solution. Depend-
ing upon the value of andx, the maximizer could be &, or x**. Thus, for fixedx, the function
x(c) giving the maximizer ofi(x) — cxis well-defined.

45.4.2.4 |Injured terminal’'s power choice From the preceding analysis, it is clear that for a
given c one can properly refer to a functiog(c) giving the optimal SIR for the interferer as a
function of the unit compensation paix(c) directly yieldsP;(c), the corresponding transmission
power level.
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Figure 4.1:x** uniquely maximizesi(x) — cx, unlessc > ci, in which case, 0 is the maximizer.

u(x)
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Terminal 2 will chooses its power level to maximize

LE, . f(x) 0% = A
RCMEhZBZ Y + mel = Bau(x2) + C1xa (4.27)

Presumably, at this stagehas already been chosen, and so has the interferer’'s power as a function
of c. Clearly, terminal 2 must choose its power so that its received SIR maximizgs= f(x2) /2.

As discussed in chapter 2, the maximizer occurs*atvhich is shown in fig. 3.1 at the tangency
point betweerf and a line from the origin.

4.5.4.2.5 Injuredterminal’s price choice Through the developmentin sections 4.5.4.2.2 through
4.5.4.2.4, the second stage (“choice”) of the asymmetric compensation game has been characterized.
The same must be done for the stage of the game in which terminals announce their prices. As re-
marked in section 4.5.4.2.1, at equilibrium the interferer's compensation will match that demanded
by the injured terminal. Thus, all that remains is to specify the price that terminal 2 will demand.
This is done with the understanding that for any chosen compensatidahg interferer will choose
its power so that its received SIRxg(c) (section 4.5.4.2.3), and the injured terminal will choose to
operate at the SIR" (section 4.5.4.2.4).

The injured terminal will chooseto maximize its overall utility (taking into account what will
happen in the next stage of the game). That is, it will maximize

v(c) :

with
f(x*)

X*

L
A= Rcmthzﬁz

v(c) is a single variable function which can be readily maximized, whether analytically or numeri-
cally. Pi(c) gives the optimally chosen power of the interferer for any giwenhich follows from

the analysis in section 4.5.4.2.3. Disregarding power constraints, the furgt@rfoptimal SIR or

the interferer) can be assumed to vary smoothly wifbe., to be continuously differentiable), over

the interval[O, c_| (see fig. 4.1), and the same can be said aBpid). Over this rangey(c) is then

a composite function of continuous functions, which is therefore continuous, and must have a max-
imum over a closed and bounded set. Therefcre= argmaw(c) is well defined. Furthermore,

with Py(c) differentiable ovefO, c,|, the derivative of/(c) is well defined, and can be obtained and

set to zero.

v(c*) is the best the injured terminal can do, with a price low enough to induce the interferer to
pay and operate. > c_ (sayc = c_ +¢€), the interferer will chooseotto operate, deriving a total
utility of Dy, its original monetary budget. In this case, the injured terminal will have the channel to
itself, will receive no compensating money, and will get the the bits/Joule performance of a random
noise channel (sal, total bits, given its energy budget). Thus, if terminal 2 setsc + ¢, its
utility will be B2Bg. This must be compared agaiwét*), for a final choice of the price (eitherc*
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orc.+¢g).

455 Discussion

A compensation mechanism has been applied to the achieve an efficient allocation of power among
two mutually-interfering, data-transmitting terminals. The mechanism is efficient because it induces
the terminals to “fairly” compensate each other, by way of money or some transferable good. With
2 mutually interfering terminals, each terminal must quote two prices: obe paid tothe other as
compensation; the secondlte chargedas compensation. But each terminal faces a penalty if its
offered price differs from what the other wants as compensation.

The intuition of this mechanism can best be captured by considering a 2-terminal situation in
which only terminal 1 interferes with terminal 2 (bnbt vice-versa), which can actually happen
with successive interference cancellation (SIC). Terminal 2 must declare the amount of the transfer-
able good it wishes tohargeterminal 1 as compensation for each unit of interference. Likewise,
terminal 1 must quote the price it offets payterminal 2 as compensation. But terminal 1 faces a
penalty increasing with any difference between its offered price and what terminal 2 demands. At
equilibrium, the interfering terminal will pay the true cost caused on the other terminal by its inter-
ference, which is precisely the “fair thing to do”. This is so because if the amount paid by terminal
1 exceeded the cost its interference causes on terminal 2, then terminal 2 would in fact “make a
profit” per unit of interference. But then, it would be optimal for this terminal to induce terminal 1
to increaseits interference, and to do so, terminal 2 wodktreaseavhat it charges.

The development provides further insights into the equilibrium allocation, for the special case in
which terminal 1 interferes with terminal 2, bt vice-versa (SIC decoding). The injured terminal
will operate at the optimal SIR" (fig. 3.1), which is the bits-per-Joule-maximizing value a terminal
would choose with random noise as its only impairment. The interferer will either stay out of the
channel, or pay the exact compensation pdaemanded by terminal 2, and operate at the SIR
x1(c) illustrated in fig. 4.1x;(c) is always less thar*. The optimalc maximizesv(c), a relatively
simple function (eq. (4.28)) which has a continuous derivative for valuediudt are low enough
to entice the interferer into operating. A complete characterization and understanding of the power
and money allocations arising from this mechanism necessitates additional analytical and numerical
work.

This framework can be extended to accommodate many mutually-interfering terminals, and can
be applied outside the cellular architecture. With many terminals, the exchange of pricing signals
between terminals becomes an issue. However, the fact that terminals only care about the total
interference helps, because a terminal’s charge per unit of interference should be independent of the
source of the interference. But each terminal may, in principle, quote a different value. The rate of
convergence toward the equilibrium prices and power levels is also a concern. But [43] shows that
a simple updating algorithm exists that leads to the equilibrium, even when terminals don’t know
“everything” about each other. In an ad-hoc network, the main challenge may be to set up a practical
accounting system to track down the compensating payments among terminals.
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The impact of this mechanism on several issues involving communication networks should be
explored. For instance, it is known that mobile terminals using a cellular system from “bad loca-
tions” can stress the system, and reduce its capacity. This can be more severe if a poorly-situated
terminal transmits media content (e.g., video) that demands a high data rate, and an inflexible signal-
to-interference target. These terminals should, ideally, defer transmission pending a better location,
unless their information is “urgent”, which is only known to the transmitter. Implementing a mech-
anism such as this should induce a more judicious use of the network by these terminals.
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Chapter 5

Power and Coding Rate Allocation for
Scalably Encoded Information

5.1 Introduction

At the foundations of the JPEG 2000 image compression standard there are ideas found in the em-
bedded zero-tree wavelet coding (EZW) algorithm introduced by [36], a technique which produces
a fully “embedded” bit stream[41]. An embedded bit stream is “scalable”, in the sense that it can be
truncated at an arbitrary point, and decoded. If bits are decoded as they are received, at any instant
the “quality” of the decoded information is the best available for the number of bits received up to
that moment. Thus, an image compression ratio can be varied simply by truncating the coded bit
stream. Similar ideas can be applied to video coding. In fact, fine-granular scalability (FGS) is at
the core of the MPEG-4 video-compression standard.

Scalable coding can be fruitfully exploited in many practical applications, including: (i) im-
age database browsing (ii) progressive image transmission (where the consumer can examine the
improving decoded image as bits are received, and can abort the transfer when the image quality
reaches a satisfactory level), and (iii) multimedia web serving (a single file can serve a variety of
consumer requirements and capabilities, and also various congestion/channel conditions).

These files introduce interesting resource management issues, because their special structure can
be exploited to allocate scarce resources efficiently. Such analysis necessitates a relatively simple
model combining the properties of analytical tractability, with flexibility to accommodate a wide
variety of situations. This work proposes such model.

In the situation under study, a terminal with a limited supply of energy and a long sequence of
scalably encoded images to transfer over a wireless link seeks to manage its energy efficiently. At
the center of this inquiry is a function yielding the “quality” of the resulting information (image) in
terms of the fraction of the encoded file which is chosen for decoding. Below, it is postulated that all
that is known about this function is that its graph is an S-curve, as introduced in [29] and discussed
further in [30] (see fig. 5.2). In chapter 1, this relation was arrived at via rate-distortion theory.
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As discussed in previous chapters, there are practical reasons why the S shape is chosen. An
arbitrary S-curve starts out convex and smoothly transitions to concave. But, as shown by fig. 5.2,
the inflexion (transition) point is arbitrarily placed. Therefore, this curve in fact contains as special
cases a (“mostly”) concave curve (inflexion point is “very close” to the origin, &lg) and a
(“mostly”) convex curve (inflexion point is “very far” from the origin, e.g,4). Likewise, some S-
curves behave like smoothed out “step” functions (&g. And the “ramp” displayed by S-curves
such adJz, can express a near linear relation, over a range of interest. Thus, by assuming an S
shape for the function giving the “quality” of the image recovered from the truncated file in terms
of the number of decoded bits, this work allows not only the S-shape proper, but also the concave
and the convex shape, as well as steps and ramps. These shapes should accommodate most, if not
all situations of interest.

Figure 5.1: Some representative S-curves

Additionally, as discussed in fundamental psychology texts (see, for instance, [8, Chapter 7]),
the S-curve naturally arises in psychophysical experiments involving human perception. In these
experiments, a graph is made in which the horizontal axis denotes the “intensity” of a stimulus
applied to a subject. The vertical axis denotes the probability that the subject correctly identifies or
detects the presence of the stimulus. These graphs have often the shape of fig. 5.2.

The peak signal-to-noise ratio (PSNR) is the image quality metric most commonly found in the
literature. This is a simple to calculate index, which can be sensible and useful in many situations.
However, as an indicator of image quality as perceived by a human observer, the PSNR is at best
a very crude measure. Dansereau and Kinsner [4] argues this further, while proposing a metric
specifically aimed at progressive image transmission: the Renyi dimension spectrum. But this
measure is much too complicated for resource management studies.
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This analysis also depends critically on a function giving the probability of success of the trans-
mission of a data packet in terms of a signal to interference measure at the receiver. This “frame-
success” function (FSF) is determined by the physical layer of the system. It can be safely assumed
that for any physical layer, any such function has an S-shaped graph. Thus, two different S-curves
are at the core of this analysis.

The single-terminal case is fully analyzed, and the foundation is laid for a multi-terminal analy-
sis. The problem is set up as a joint optimization in which two key variables are jointly optimized:
transmission power, and the number of bits of each file to be decoded. A closed-form solution is
given.

The scientific literature contains various works involving power allocation and the transmission
of scalably encoded information. The most relevant may be [14], which considers files which
have been “layer coded” (a form of discrete scalable coding) and seeks a power allocation policy
across the various layers, minimizing the overall end-to-end distortion. However, previous works
seeking a joint power, and coding rate selection in order to maximize an image quality metric appear
unavailable.

5.2 Conceptual framework

5.2.1 Quality as a function of the number of decoded bits

At the center of this inquiry is a function yielding the quality of the decoded image as a function of
the number of bits in the fraction of the encoded file which is decoded. In chapter 1, an argument
grounded on rate-distortion theory led to a characterization of a quality-rate curve. Below, an “ax-
iomatic” approach is undertaken. Image quality is a subjective matter. Nevertheless, certain basic
assumptions can be made about the properties of a function giving quality as a function of received
bits. About this function, it is postulated that:

1) Its domain is the intervdD, M|, whereM is the length in bits of the entire encoded file.

2) Its range is the intervdD, 1]. This is just a normalization. A 1 denotes the best possible
quality of the decoded image (say the quality of the original).

3) It must be strictly increasing (more decoded bits yield a better image quality, by design)

4) Its graph is S-shaped, as in figure (5.2). In practical terms, sigmoidness further implies that:
(a) If the number of decoded bits is sufficiently large, the quality of the decoded image will be
sufficiently close to “perfect”. (b) After a sufficiently large number of bits have been decoded, the
marginal contribution to image quality of an additional bit becomes “very small” and is decreasing.
(c) If the number of decoded bits is sufficiently small, the quality of the decoded image will be
sufficiently close to zero. (d) Bits at the beginning of the encoded file contribute to the perceived
“quality” of the image at an increasing rate (“initial convexity”). One plausible interpretation is that
even a highly distorted image may provide enough information to identify its “meaning” (what is
it? a bird?, a person’s face?, etc.). This essential semantic information is provided by the bits at the
beginning of the encoded file (“base layer”) .
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Chapter 2 and references [30, 29] discuss the technical characterization of a generic S-shaped
function. A fixed function could work for different images, in particular if the images are sufficiently
“similar” (e.g., each corresponds to a passport picture of a respective adult).

5.2.2 A Generalized frame-success function

The frame-success function (FSF) yields the probability that a data packet is received successfully
as a function of the received signal to interference ratio. This function is determined by physical
attributes of the system, including the modulation technique, the forward error detection scheme,
the nature of the channel, and properties of the receiver. It is assumed that all that is known about
the FSF,fs, is that its graph exhibits a sigmoidal shape as in figure (5.2). More specifically, it is
assumed that the function defined bfx) = fs(x) — fs(0) obeys the properties of the generalized
sigmoidal function introduced in [29] and discussed further in [30].

1

LigM -

Lig,®)

Figure 5.2: An S-curve and some of its tangents

5.3 Single-user analysis

5.3.1 Problem statement

The problem faced by a single transmitter in a wireless ( in particular CDMA) network can be
formulated as follows.

It is taken as given a (1) certain amount of energy,available for transmission, (2) fixed
transmission rate dR bits per second, (3) long sequence of files each of leMjtleach divided
into blocks of bits (packets/frames) of lendth< M and each corresponding to equally important
similar images encoded scalably, (4) functigias defined in section 5.2.1 giving the quality of an
image obtained by decoding a truncated encoded file as a function of the numbers of bits decoded,
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(5) certain level of interference (noise), (6) functidhas described in section 5.2.2 giving the
probability that a data frame is received successfully as a function of the signal to interference ratio
at the receiver.

The transmitter wants to choose optimally (i) the number of successfully received bits at which
point a given file can be considered successful, so that the transmission of the next file is started
(thatis, the “optimal” level of image quality at which point it is considered “good enough”), and (ii)
the transmission power. The objective is to maximize the weighted number of images transferred by
the time the available energy runs out, where the weight is the quality of each image. This criterion
can also be stated as maximizing the “total quality” transferred.

Because packets have been assumed much smaller than a file, the fact that the number of bits in
a frame and file is an integer is ignored. Because the images are similar enough (e.g. each image
corresponds to a (respective) human face), the same function works for all images.

5.3.2 Objective function

Suppose that at a certain instant of tinges M bits of the current file have been received. Then,
g(y) < 1 gives the quality of the image that would result if the file containing the received bits is
decoded.

Let Q = P-h be the power at the receiver when a certain data packet is transmitted with power
P; and letl be the interference (noise) power. Thég(GQ/I) is the probability that said packet is
correctly received@ is a CDMA constant, the spreading/processing gain).

Assuming that, once a packet is received in error, re-transmission is ideal, then the total number
of times a given packet needs to be (re)-transmitted is a geometric random variable, whose probabil-
ity distribution is of the formr(1 — mk~1, with = fs(GQ/1). The expected value of this random
variable is ¥, interpreted as the average number of times the same packet needs to be transmitted
to ensure correct reception.

The average amount of energy that needs to be spent in order to achieve the successful reception
of an image of qualityy(y) when transmission power is setRocan be obtained as follows. Each
packet requires an amount of energy equal to the product of 3 factors: the Potiner length in
time of a packet (given the transmission r&)e and the average number of times the same packet
needs to be transmitted to ensure correct reception. Edihpacket lastd /R secs. Therefore,
the average amount of energy required by a packiet (& /R) - (1/11). Sincey bits of data contain
y/L packets, the average amount of energy necessitated by the successful reception of an image of

quality g(y) is given by
PL y Py
M L 1R (1)
To obtain the average number of images of quality) which can be successfully transmitted with
an energy budgdi, we divideE by the preceding expression (eq. (5.1)), and obtain:
TRE fs(GhP/I)

By = RET (5.2)
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To obtain the total received “image quality”, the preceding expression needs to be multiplied by
g(y), the quality of each image. Therefore, the user wants to maximize
e S(GNP/DIY) _ - fs(GP/1) g(y) 5:3)
Py P y
For technical reasons discussed in [3]x) is replaced withf (x) = fs(x) — fs(0). Then we

can re-write equation () as

REGhf(GhP/1) g(y) -, f(x) g(y)
| GhP/I y X y

(5.4)

with X := GhP/I.

5.3.3 Optimization Model and Solution

In view of the preceding analysis, the objective of the single user can be summarized as

max —- === (5.5)
Xy

st.0<y<M (5.6)

0<x<X (5.7)

wherex:= GhP/I with P the largest available transmission power.

Notice that the ratios in the objective function (5.5) are mutually independent; i.e., one does
not influence or constrain the other. Therefore, the ratiog /x andg(y)/y can be maximized
independently, and the maximum of the product of the ratios can be obtained as the product of the
individual maxima. This problem can be easily solved by invoking the results provided by chapter 2
and references [30, 29]. These works discuss finding the maximum of thé (afjx s.t. 0< x < x
where all that is known aboutis that its graph is S-shaped. The maximizer is the lesseaofd
X*. X*is the abscissa of the unique point where the graphistangent to a ray emanating from the
origin (See figure (5.2) ).

From the preceding paragraph, the maximumf 0f) /x s.t. 0< x < X is obtained ak** =
min {x*,x}. Likewise, the maximum of(y)/y s.t. 0<y < M is obtained ay** = min {y*,M}.

The single-user problem is solved.

5.4 Discussion

The problem faced by an energy-limited terminal with a long list of scalably encoded similar images
to transfer over a wireless link has been solved. A tractable model, based on two “S-curves”, has
been discussed. A closed-form solution is given in terms of a point which can be easily identified
in the graph of the pertinent S-curve. The analysis leads to the maximization, over an appropriate
region, of the produdR f(x) /P x g(y)/y, wherex is the received SIRR is the transmission power,

R the data transmission raté,s the “frame success” functiow,is the chosen number of decoded
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bits, andg is the “quality” function. Rf(x)/P has the unit bits/Joule, well known in the power
control literature (see chapter 4 and reference [30]), while quality/bit is the ugitydfy. Hence,
the maximized product is an intuitively appealing index in quality/Joule.

Although the problem is set up as a joint optimization of power and coding rate, the development
indicates that both variables can be “decoupled”. In retrospect, this seems reasonable. The files
are transmitted in small segments (data packets) which are assumed much smaller than the files,
constant, and independentyptthe number of bits chosen for decoding. Power is needed to increase
the probability that a data packet is received successfully. But the physical layer treats each packet
in the same way, irrespective of the file to which it belongs, or its position within its file. Thus, the
point,y, at which a given file is truncated to start the transmission of the next file has no effect on
the probability of success of the intervening packets. Future research could consider the possibility
that packet length be a variable dependeny @ashorter packet length for a smaligr

The S-curve practically contains as special cases a strictly convex and a strictly concave curve.
However, it is shown in chapters 2 and 3, thatf ifrespectivelyg) were strictly concave, the ratio
f(x)/x (respectivelyg(y)/y) would be maximized at zero. In this case, the power levet, (re-
spectively, the “truncation pointY)) should be set as small as possible. Likewisé, (ifespectively,

g) were strictly convex, then the power level, (respectively, the “truncation point”) should be set as
large as possible.

This analysis can be extended to include many terminals sharing a CDMA channel. In this
case, each terminal’s “noise” must include the interference caused by others. The problem can
be set up as a “game” in which each terminal seeks to maximize its quality/Joule index. In this
formulation, the key question is the existence and characterization of a “Nash equilibrium” (NE);
i.e., a feasible allocation (of power and file size here) to each terminal, such that no terminal would
be better off byunilaterally changing its allocation. Both of the ratios(k)/x andg(y)/y) making
up the quality/Joule index are quasi-concave [29]. It is well-known that a game in which “pay-
off” functions are quasi-concave, and each player’s “strategy space” (power and file size here) is
closed and bounded does have a NE. Game theory has been fruitfully applied to the transmission of
conventional data over a wireless channel in chapter 4, and in other works, such as [20, 33].
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Chapter 6

Coding Rate and Power Allocation for
Scalably Encoded Video Streaming

6.1 Introduction

Modern media encoders, such as those in the the JPEG 2000 (still images) and MPEG-4 (video)
compression standards, support scalability. Fine granular scalability produces an “embedded” bit
stream, which can be truncated at an arbitrary point, and decoded, leading to various levels of repro-
duced media quality. Video scalability can be achieved along various dimensions, including SNR,
spatial (size), temporal (frame rate), and frequency; and these scalability modes may be combined
[46, Ch.11].

In the present chapter, the model discussed in chapter 5 for still images is extended to consider
the transfer over a wireless link of scalably encoded video. This chapter partially overlaps the ma-
terial in chapter 1. Each T secs of video leads to a Y-bit embedded bit stream, which is independent
of the other segments. For example, T may correspond to one group of pictures (GOP), or several
GOPs, in video coded according to MPEG standards. An energy-limited terminal seeks to jointly
optimize both the truncation point of the embedded bit stream (coding rate), and its transmission
power.

We postulate thadll that is knownabout the function yielding the “utility” or “quality” of the
resulting video segment in terms of the number of bits in the truncated file (coding rate) is that its
graph is an S-curve. As shown in fig. 5.1, this family of curves contains as special cases (“mostly”)
concave curves (e.@1), (“mostly”) convex curves (e.gl)s), and smoothed out “step” functions
(e.g.U»). And the “ramp” displayed by S-curves suchlks can express a near linear relation, over
a range of interest. These shapes should accommodate most, if not all situations of interest. Other
reasons for adopting this family are given in chapters 1 and 5.

Another critical function is that giving the probability of success of the transmission of a data
packet in terms of a signal to interference measure at the receiver. It can be safely assumed that for
any physical layer, any such function has an S-shaped graph. Thus, two different S-curves are at the



52

core of this analysis.

The scientific literature registers at least one previous use of the idea of maximizing end-user
utility in video streaming in [18], later extended to [19]. But that work focuses on a wired net-
work with renegotiable CBR services, does not consider scalability, and only considers a loga-
rithmic utility function. There are also various works involving power allocation and the wireless
transmission of video. Typically, power is minimized, and possibly other parameters are adjusted,
while holding “end-to-end” distortion to an acceptable level. For instance, [47] specifically targets
scalably-encoded video, while seeking an optimal power allocation, with joint source-channel cod-
ing. However, previous works seeking a joint power, and coding rate selection in order to maximize
a video quality metric within an analytical model appear unavailable.

Below, we describe the system model, and discuss more formally the key functions. Then, after
formally stating the problem, we build and analytically solve an optimization model, and provide a
numerical example. We conclude by discussing our results, and commenting on possible extensions.

6.2 Conceptual framework

6.2.1 System model

Fig. 6.1 shows schematically the system engaged in the wireless transmission of scalably encoded
live video. Each T secs of video is encoded as a fully embedded bit stream of ¥ngthich

may be truncated to length Fory <Y, the reproduced video is imperfect. Its quality or utility

is u(y), with u an increasing function discussed below. The bit stream is broken up into packets.
Each packet may have added error-control bits (error-control systgrshown). These packets
enter a large buffer prior to transmission. Packets are wirelessly transmitted at the Ratpsf

To ensure continuous video play out at the receiver, the actual transmission time alloted to the
y bits corresponding to a given T-sec segmerkis T secs. (i.e., the coding rate cannot exceed
RA/T). AA < T may account for processing and propagation time not being modeled, and a certain
“guard time”. The probability that a packet is successfully receiveid(is), with x the signal-to-
interference ratio (SIR) at the receiver, which is determined by the chosen transmission power, any
path loss, and the interference (noise) present at the receiver. The fuficikodiscussed further
below. Packets received in error which cannot be corrected result in ideal re-transmissions until
correctly received and confirmed. Correctly received packets are placed in a large buffer. Other
symbols shown in fig. 6.1 are discussed as introduced below.

6.2.2 Quality as a function of the coding rate

At the core of this inquiry is a function yielding the quality or utility of the decoded video as a func-
tion of the number of bits in the truncated encoded file. This function cannot be derived; it is fully
determined by the end-user, in the same way in which the “utility function” at the core of economic
studies resides within the consumex(y) could be obtained by psychophysical experimentation.
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Figure 6.1: Schematic diagram of the wireless streaming of scalably encoded video.

We postulate that this function is such that its graph is an S-curve. Some of the implications of this
assumption are discussed further in section 5.2.1. A fixed function could work for different video
segments, in particular if the segments are sufficiently “similar” (e.g., each corresponds to differ-
ent parts of the same sporting event). Further justification is found in chapters 1 and 5. Chapter 2
discusses the technical characterization of a generic S-curve.

6.2.3 A Generalized frame-success function

The frame-success function (FSF) yields the probability that a data packet is received successfully as
a function of the signal to interference ratio at the receiver. This function is determined by physical
attributes of the system, including the modulation technique, the forward error detection scheme,
the nature of the channel, and properties of the receiver. We assunadl that is knownabout the

FSF, fs, is that its graph exhibits a sigmoidal shape as in figure (6.2). For good technical reasons
similar to those discussed in chapterf8x) := fs(x) — fs(0) replacesfs in the analysis belowfg(0)

is generally very small, but not zero).

6.3 Analysis

For our purposes, it is convenient to regard the wireless channel as if it was a deterministic channel
producing the throughput that the actual channel produces on the average. Thus, we assume that,
when the SIR at the receiver is (L/M)Rf(x) information bits are received each second at the
decoder buffer. The intuition is as follows. With a perfect channel, each packet would be filled with
information bits (no ECC), and would be received successfully at first try. Biidprmation bits

would be received each sec. However, with an imperfect chalhell. ECC bits are introduced in

each packet, and still, on the average, amfyx) out of everyn packets are received successfully.
Thus, an average ¢t /M)R f(x) information bits are successfully transferred each second.
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6.3.1 Problem statement

It is taken as given a (1) certain amount of enejyavailable for transmission, (2) fixed transmis-
sion rate ofR bits per second, (3) long sequence of files, each of lepgtly, each divided into
packets of length < y and each corresponding to a video segment of length T secs which has been
encoded scalabliL(— M error-control bits are added to each packet), (4) maximal AreT secs.

to complete the transmission of tidits corresponding to a given T-sec segment (i.e., the coding
rate cannot exceel®A/T) (5) utility/quality functionu as defined in section 6.2.2, (6) certain level

of interference (noise), (7) frame-success functiofg as described in section 6.2.3.

The transmitter wants to choose optimally (i) the truncation point (coding rate) and (ii) the
transmission power, in order to maximize the sum of the quality or utility of each one of the video
segments that can be viewed at the receiver before energy runs out.

6.3.2 Objective Function

For a given level of desired quality, there is a corresponding number of information bjtshat
produces this qualityu(y) = u). Thus, the total number of information bits received successfully
afterA secs. must be not less than thigAnd spending energy to exceed this level would be unwise,
because it would decrease the total number of segments of quittiag are delivered before energy
runs out. Thus, for giveg andA, the terminal must choose its transmission power so that

ﬁRf(X)A:y (6.1)
There is one specific SIR valugly), that satisfies eq. (6.1), and a specific transmitted pdgf,

that yields the SIR(y) at the receiver. Thus, for a givéy) y determines the transmission power.

The total amount of energy spent on the transmission of a video segment of quig)itis
P(y)A. Thus, the total number of T-sec video segments of qualiy that can be transferred with
an energy budget d is E_/(P(y)A). Then, the total quality viewed, which the terminal wishes to
maximize, is _

E uly)

A P(y)
For a fixed level of energ¥, the terminal only needs to maximiaéy) /(AP(y)) (quality per Joule),
and if A is also fixed, just maximiza(y)/P(y), the quality-to-power ratio (QPR).

(6.2)

6.3.3 Optimization Model and Solution

In view of the preceding analysis, the objective of the single user can be expressed as maximizing
u(y)/P(y). Assuming a CDMA technology, with a spreading gairGf= R;/R (chip rate over bit
rate), channel gain di, and interfering powel, the received SIR and the transmitted power are
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related ax = GPh/I. Thus, the terminal objective is equivalent to :

maxM maxiu(Bf(X))
X,y X X X
st.y=Bf(x) OR s.t. 0<x<X
0<x<x

whereB := (L/M)RA andx:= GhP/I with P the largest available transmission power.

With u(Bf(x)) := s(x), the terminal should maximize the ras(x)/x. It can be shown that, as
shown in fig. 6.2, the composite functiafB f(x)) retains the S-shape of battand f. As discussed
in [30, 29], forany S-curveS, S(x)/x is always maximized at, the abscissa of the tangency point
between the S-curve and a straight line that passes through the origin.

6.3.4 Numerical example

Fig. 6.2 summarizes a numerical example. We assume that it has been experimentally determined
that, for this end-user, the utility or quality functiefy) = [1+ exp((60—y)/10)]"(plotted at the

top of fig. 6.2). Withx denoting SIR at the receiver, the frame-success function is assumed to be
fs(x) =[1— % exp(x/2)]8%whose graph is second from the top), which corresponds to non-coherent
FSK modulation, no FEC and 80-bit packet size. Suppose that T secs of video can be scalably
encoded, at full rate, tg = 100 (in some multiple of bits). The paramet&d., M, andA are such

thatB = (L/M)RA = 110 (in the same unit & ). The third subplot corresponds to the composite
functionu(Bf(x)) := s(x), which clearly retains the S-shape of betland f. The terminal must
choose its transmission power so that the ratig /x (plotted at the bottom) is maximized. The
maximizer isx* =~ 10.5, and its matching truncation pointy$~ 110« f (10.5) = 88. Thus, for this

user, under this physical layer, the scalable file should be truncated to about 88% its size, leading to
a per-segment video quality of about 94% that of the original.

6.4 Discussion

We have investigated the problem faced by an energy-limited terminal transferring over a wireless
link a long sequence of files, each corresponding to a segment of video which has been scalably
encoded, as supported by the MPEG-4 standard. We have discussed a tractable analytical model,
based on two key functionsi(y) which gives the perceptual quality or utility of a video segment

as function of the coding rate, arigdx), the packet success probability as function of the signal-to-
interference ratio (SIR) at the receiver. By assuming #tlathat is knownabout these 2 functions

is that they are S-curves, we are de facto allowing the possibility that (“mostly”) concave, convex,
“step”, and linear functions play those roles (fig. 5.1). We have postulated that the terminal wishes
to maximize the “cumulative utility” (or quality) from all the segments that reach the receiver before
energy runs out. Our analysis has led us to maximize the quality-to-power ratio, which is equivalent
to maximizing quality per Joule. Although we have set up the problem as a joint optimization of
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Figure 6.2:

From the top, (i) the S-curve(y) giving the perceptual quality of a video segment, as a function of
the coding rate, (iif (x), the probability of successful reception of a packet as a function of the
SIR, (iii) the composite function(B f(x)) := s(x), (iv) the ratios(x) /x which the terminal should
maximize. Forany S-curveS, S(x)/x is always maximized at*, found at the tangency point
between the S-curve and a straight line from the origin.
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power and coding rate, our analysis indicates that, when the transmission time is constrained by the
underlying streaming application, any one of these variables fully determines the other. The terminal
should choose its transmission power so that the received $iBximizes the ratia(B f(x)) /X,

which occurs at the tangency point between a straight line from the origin, and the graph of the
composite functiou(B f(x)) (also an S-curve). If the terminal lacks sufficient power to reach that
SIR, it should operate at maximal power, unless the resulting video quality is unacceptably low.

Direct implications of our analysis include: (i)ufy) ~ ky so that the quality-coding-rate rela-
tion is nearly linear, the optimal SIR is determined by the physical layer, as the maximitzeq) pk
(which isthe sameSIR that a data-transmitting terminal would choose, as discussed in chapter 3);
(ii) if ubehaves like a step function, the terminal should truncate just past the point where the step
occurs; and (iii) iff behaves like a step function, then the optimal SIR is just past the point where
f jumps.

Even with a fixed physical layerf (function), the optimal operating point could change due to
a variation in the perception of quality function) at the receiver, or movement that may force the
transmitter to operate at an SIR below the optimal level due to power limitations. If the streamed
video has been encoded prior to transmission, scalability is essential to achieve such adaptation, via
a change in the truncation point of the embedded bit stream. But if coding is being performed con-
current with transmission, a non-scalable encoder that can adapt its rate in real-time could provide
a more efficient solution, at a possibly higher computational cost. We can also apply our analysis to
optimally choose the coding rate of the non-scalable encoder.

A situation in which several video transmitters share a CDMA channel can be set up as a “game”
in which each terminal seeks to maximize its quality-to-power index, with each terminal’s “noise”
including the interference caused by others. Game theory has been fruitfully applied to the wireless
transmission of data, in chapter 4 and in other works, such as [20, 33].
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Chapter 7

Quality-Distortion Theory: Distortion
Management when Fidelity is Expensive

7.1 Introduction

Distortion measures the difference between a signal and its copy. It is an important QoS measure
in the processing and transmission of error-tolerant information, such as media signals intended for
human consumption. Typically, when dealing with distortion, the resource-management literature
assumes that up to a level, distortion is of no consequence, but beyond that level, it makes the signal
totally useless. Such “hard threshold” seems at odds with the way humans process media signals.
These signals can be useful at various degrees of noticeable distortion. And when a reduction of
distortion is costly, the consumer can prefer more distortion, in exchange for energy, money, or other
savings. Furthermore, scientific work has shown that judiciously relaxing the distortion constraint
by a small amount can lead, under certain conditions, to a disproportionately larger increase in the
capacity of a CDMA network[15].

Hence, a tractable model is needed for the way humans perceive the quality of “imperfect” sig-
nals. Below, a model that establishes a quality-distortion relation is (re)introduced. The model is
sufficiently flexible to capture a wide variety of plausible quality-distortion relationships, and in-
cludes as special cases some of the simpler cases, such as the step function often assumed by the
literature. It is postulated that the perceptual quality of an imperfect copy of a signal is determined
by a sensible decreasing function of its distortion. No specific algebraic functional form (“equa-
tion”) is imposed. Rather, a general family of Q-D functions is assumed. Any such function has the
general shape shown in fig. 7.2. This shape can accommodate a wide variety of quality-distortion re-
lations (“step”, “ramp”, convex, concave, etc). Further discussion on this matter is found in chapter
1.

As remarked above, the literature generally assumes that distortion has no noticeable effect up
to a certain level, and completely spoils the signal after that level. Reference [18] takes a somewhat
more general approach by postulating that the end-user wishes to maximize the “utility” of an im-
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perfect media signal. But this reference focuses on video over a wired network, and only considers
the special case of a logarithmic utility function.

The quality-distortion curve (first introduced in chapter 1) can also be interpreted as a “utility
function” giving the “usefulness” to an observer of an “imperfect” signal. A key difference between
perceptual quality and “utility” is that utility is application-dependent. For instance, for a given
observer, a level of distortion deemed unacceptable for a “serious” application, may be perfectly
acceptable (to the same observer) in a less demanding situation. Because the family of Q-D curves
(“utility functions”) assumed in the present chapter includes as special cases both the logarithmic
and the step function, the present approach is a strict generalization of the literature.

Under this approach, the “right amount” of distortion is a variable to be chosen optimally,
whether directly, or, by choosing other resources, indirectly. Below, a situation in which distor-
tion is directly chosen is considered first. A consumer is offered media files at various degrees of
distortion. Both his “utility” and the cost of acquiring a file are decreasing in the amount of distor-
tion in the file. With a limited budget, which could be in money, energy, time or any other valuable
resource, the consumer faces a classical quantity vs. quality trade-off. He can obtain relatively few
high-quality media files, or relatively many low-quality ones. What is the optimal choice? It turns
out that with linear pricing the optimal amount of distortion can be quite clearly described. It is
obtained by drawing a tangent line from the pai@tD) to the graph of the utility function is the
largest available distortion level). With non-linear pricing, a similar but somewhat more involved
procedure can be applied.

A more specific communication scenario is also considered. An energy-limited transmitter with
many media files (images) to transfer over a wireless link wants to choose optimally its transmission
power. At low transmission power, many bit errors occur, which produce a highly distorted image
at the receiver. High transmission power produces less distortion, at the expense of higher energy
consumption per file. Again, a quality vs. quantity trade-off arises. The transmitter opts to maximize
the totalweightednumber of files transferred before energy runs out. The weight of each file is its
expected “utility” (perceptual quality), which is a function of its distortion. This distortion is a
random variable determined by the number of bit errors during the transmission of the file, which
is itself determined by the signal-to-interference ratio (S{Rat the receiver. WitIhJ_(y) denoting
the expected utility of a media file, the analysis leads to choosing ag*StRmaximize an index in
utility/Joule, which is proportional th(y)/y. For bit-error functions of practical intere&(y) has
the familiar S-shape, angd can be obtained by drawing a tangent line from the origin to the graph
of U(y) (seex* in fig. 5.2).

Below, the general properties of the proposed family of Q-D curves are formally given and
discussed. Then, the situation in which the degree of distortion of media files can be directly chosen
optimally given a cost function is analyzed. Subsequently, the more specific telecommunication
problem is solved. Finally, some general summarizing comments are given. (Below, the phrase
“perceptual quality” and the word “utility” are used exchangeably. Strictly speaking, a difference
could be established between the two, as discussed above)
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7.2 Quality/distortion Theory

Distortion is typically defined as a relatively simple mean square measure of the difference between

a signal and its copy. As an indicator of media quality as perceived by a human observer, this
index is, at best, a very crude measure. pheeptualquality of an “imperfect” copy of a signal is
determined by the human sensory system (visual, auditory, etc). It seems reasonable to assume that
the perceptual quality is somehow determined by distortion; i.e., that a fur@tidhthat translates
distortion into perceptual quality can be found. The quality-distortion function cannot be derived,
and should not be imposed. It should be obtained by psychophysical experimentation. However, one
can make some reasonable assumptions about the properties that any such function should possess.
Then one can analyze a problem of interest and (optimistically) describe its solution by employing
the general properties of the curve.

7.2.1 Intuitive specification

Figure 7.1 illustrates some plausible, sim@éD) curves. First is, of course, the supposition that
perceptual quality falls linearly as distortion increases from zero to its highest value (“quality equals
fidelity”). This assumption would greatly simplify the analysis. But it essentially means that the
human visual system (HVS) (or auditory, etc) is perfectly “tuned” to a very simple mean squared
measure, ..., in all cases, ..., for all people. Such a strong assumption would be adventurous, and
likely to be refuted by experimentation. Another highly simplifying assumption often employed in
the literature is that distortion is unnoticeable up to a leedh(fig. 7.1) but it totally spoils the
signal beyond that point@(D) is a “step function”). But our own experience tells us that media
signals can be useful at various degrees of noticeable distortion. Furthermore, when a reduction of
distortion is costly, a human may choose to tolerate more distortion, in exchange for energy, money
or other savings. But the step function assumption precludes the study of such trade-offs. A third
possibility illustrated in fig. 7.1 is the “rammQ(D), implying that distortion has no noticeable effect
up to a level &), and completely spoils the signal beyond another ldvglwhile varying linearly
between these two points. Presumablgndb would be determined by the specific user/application
combination. The ramp includes as special case the thresheld(= ¢) and the linear relation
(a=0,b=Dpmax); but still its “piecewise linearity” is a big imposition which may not be supported
by experimentation.

Further reflection indicates that it is reasonable to assume that the graph@fhéunction
is a “reversed” S-curve, as shown by fig. 7.2. This graph strictly generalizes the step function
often assumed in the literature. And the family of S-curves includes as special cases curves that
are “mostly” convex, others that are “mostly” concave, and some whose “ramps” follow closely a
straight line over a given interval. Thus, if the analyst assumesthtat is knowrabout theQ(D)
curve is thatitis a reverse S-curve, and conducts the analysis on the basis of properties derived from
this shape, the solution procedure and conclusions will be valid for a wide variety of plaQéib)e
relations.
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Figure 7.1:
Quality vs. distortion: Some plausible simple relations arefi@@lity equals qualityred dashed
line); (ii) hard threshold (step); (iiilamp(blue broken line). The ramp includes as special case the
threshold & = b = ¢) and the linear relatiora(= 0 ,b = Duax ). But the reverse S-curve includes

all these cases and more (see next figure).
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7.2.2 Formal definition

The Q-D curve (“utility function”) has the following properties:

1) Its domain is the intervdD, 5] whereD is the largest available level of distortion.

2) Its range is the intervdD, 1]. This is just a normalization. A 1 denotes the best possible
quality of the decoded file (say the quality of the original) and a zero is the 'quality’ of a maximally
distorted file .

3) Itis strictly decreasing (distortion worsens quality)

4) Its graph is “reversed” S-shaped, as in fig. 7.2. In practical terms, reversed-sigmoidness fur-
ther implies that: (a) If the distortion is sufficiently small, the quality of the decoded file will be
sufficiently close to “perfect”. (b) After distortion has been sufficiently reduced, the marginal con-
tribution to media quality of further reductions of distortion becomes “very small” and is decreasing.
(c) If the distortion is sufficiently large, the quality of the decoded image will be sufficiently close to
zero. (d) The function becomes convex as distortion increases (“eventual convexity”). One plausi-
ble interpretation is that even a highly distorted image may provide enough information to identify
its “meaning” (what is it? a bird?, a person’s face?, etc.). This essential semantic information is
provided at high levels of distortion. Thus, the utility of the distorted imagesases at a fast rate
as distortion iseduced from its highest lev@ight to left in the graph).

utility

distortion

Figure 7.2:
In the eyes of the beholder: Media signals can be useful to end users at various degrees of noticeable
distortion. This is captured by a “utility function” indicating the “usefulness” of the distorted signal.
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7.2.3 An alternate view: fidelity vs. distortion

Rather than basing the argument on the distortiorof the recovered signal, one can focus on

the variablex = D — y, interpreted as the “fidelity”, or the amount of distortion which has been
“avoided” or “removed”. Whenx = 0 the resulting signal is “fully” distortedy= D). We can think

of this as a signal obtained by guessing all the bits in the concerned file, which yields the “cheapest”
possible image. To get an image with any less distortion necessitates some kind of expenditure. The
largerx (the difference betweeb andy), the higher the quality of the image, and the greater its
cost. Thus, this analysis can be based on the derived fursgtipn= u(D —y). The graph ofi(—y)

is the “mirror image” of that ofi (“time reversal”). And the graph(ﬁ—y) is the same as that of

u(—y) but shifted to the righb units. Thus, the graps$(x) yields a “standard” S-curve, as displayed

in fig. 5.2. This observation will prove useful in the technical development.

7.3 Acquiring Variably Distorted Information

Pedagogically, it may be useful to set up the problem of interest in a general scenario, before intro-
ducing communication issues.

7.3.1 Problem statement

A consumer can acquire files corresponding to perceivable media (say images), each available at
varied degrees of distortioy,< [0, 5] The cost of any one image (in terms of money, energy, or
any other scarce resource that the consumer has and valwgg), i&hich is always positive and
decreasing in the level of distortiog, For convenience, Iet(5) = 0 andc(0) = co. Images are
equally valuable to the consumer, in the sense that he is indifferent between any one of two images,
if they both have the same level of distortion. The usefulness, quality, or “utility” to the consumer of
a distorted image is determined as a function of its distortiploy a functionu(y), whose properties
are discussed in section 7.2.2.

The consumer wants to spend his budgeiptimally. That is, he wants to determine, giugrc
andB, what is the “right” amount of distortion he should choose. If he chooses to acquire images
with very small distortiony = 0), the cost of each image(y), will be “high”, and the number of
images he will get to viewB = c(y), will be small. On the other hand, choosing a laygeill result
in a large number of highly distorted images.

Notice that, as discussed in section 7.2.3, the problem can be stated in term®of y, which
is interpreted as the amount of distortion which has been “avoided” or “removed from” the image,
or simply its “fidelity”. In this case, the pertinent cost function is denoted;és.

7.3.2 Objective Function and Constraints

Some reflection indicates that the consumer should maximize his total utility, which is obtained as
the product of the quality (or utility) of each image by the total number of images he gets acquire.
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Hence, the consumer should solve

u(y)
oyes  oly) (7.1)
s(x)

or max
0<x<D Cx(X)

(7.2)

(multiplying by the constarB would make no difference to the solution).
Now, the index being maximizedyy)/c(y) or s(x)/cx(x), has the unit quality/dollar, quality
per Joule, or quality per second, depending upon the customer’s scarce resource.

7.3.3 First-order optimizing conditions

The first-order necessary conditions (FONOC) for an interior solution to this problem is

cy)u(y) = c(yuly) (7.3)
orc(X)s(x) = c(X)s(X) (7.4)

Inspection of this equation immediately indicates thaty) O u(y) then any value o§ (or x) would
satisfy it.

7.3.4 Solutions
7.3.4.1 Linear cost function

If cis such that(y) = (D —y)c, (cx(x) = cx) then the objective function (eq. (7.3)) can be written,
as 5
max WP =X _ sX) (7.5)
0<x<D X X

As discussed in section 7.2.3, the graphsEf) has the form shown in fig. 5.2; that is(x) is a
standard “S-curve”. The solution to maximizis)/x, with san S-curve, is well understood. It is

the unigue positive number obtained as the abscissa of the point at which a tangent line emanating
from the origin meets the graph sf(seex* in fig. 5.2). The optimal distortion level ig = D — x*.
Equivalently, the desired solution can be obtained by drawing a tangent from the{lﬁ;ﬁjﬂto the

graph of the originali(y).

7.3.4.2 General cost functions

The preceding development can be extended, with due attention to certain technical details, to a
more general cost function. The key step is to make the non-linear coordinate transformation. For
instance, suppose thaty) = (D —y)?. Lett := (D —Y)?, so thaty = D — v/t. The objective function
can then be written as:

uD—-vt) . s(t)

max = (7.6)
0<t<D? t t
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It can be argued that the graphspft) is still a “stretched” S-curve. Hence, the value that maximizes
s(t)/t can be obtained, under appropriate technical assumptions, as before, by drawing a tangent
line from the origin to the graph cf(t).

7.4 Distortion and power management

Below, the analysis focuses on the more specific scenario of transmission of error-tolerant files (“me-
dia”) over a wireless link. For simplicity, each information bit in a file is viewed as corresponding
to a pixel of anuncodedblack and white image.

7.4.1 Problem statement

It is taken as given: (1) a certain amount of enegyavailable for transmission; (2) a fixed trans-
mission rate oR bits per second; (3) a long sequence of files, each corresponding to an equally
important image, and each divided iftbblocks of bits (packets) with a total & bits, of which
L are information bits; (4) a certain level of interference (noise}he transmission proceeds one
packet at a timewithoutretransmissions. An error-control systenagsumedo operate as follows.
Up to m bit errors per packet can be corrected; andchif 1 < k < L bit errors occur in a given
packet, each will ultimately contribute one error in the decoded file. These errors creates distortion.
Thus, there is also a functianas defined in section 7.2 giving the utility (quality) of a received file
as a function of its distortion.

The signal-to-interference ratio (SIR) at the receiver determines the bit error probability. Thus,
a larger transmission power leads to fewer errors, statistically lower values of distortion, and greater
expecteditility. But, with limited energy, more transmission power means fewer total images trans-
ferred. The transmitter wishes to utilize its energy efficiently.

7.4.2 Distortion analysis

The error-control system is viewed as a “black box” whose net effect is that a packehwith<

k < L bit errors contributd errors to the decoded file. Distortion is, generally, defined as of sum of
squares of differences between the reconstructed signal and the original. This sum equals the total
number of bit errors in the reconstructed image, in this scenario.

For example, suppose that the number of packets per file is 2, and that the code being used can
correct up to 3 bit errors per packet. Suppose that 2 and 5 bit errors occur during the transmission of
the first and second packet, respectively. Then, the first packet is corrected, so that all its information
bits coincide with the original. But the 5 errors in the second and final packet are not corrected, and
contribute 5 errors in the decoded file. Thus, the total distortion of this image will be 5. The utility
function of the user will determine how good or bad a distortion of 5 is.

It is worth noting that it is not obvious, at least in this problem, what is the worst case scenario
for distortion. In principle, it would seem that having each and every bit in error should be the worst
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that can happen. However, given the idiosyncrasies of the human visual system, if a black and white
image were to have each and every bit reversed, the result would be a perfectly intelligible image,
in which black and white simply switch roles! However, this fact is not considered in the analysis
below.

7.4.3 Expected utility of distorted image

In this scenario, distortion is a discrete random variable. The transmission power determines the
bit-error rate (BER), and frame-error rate (FER), which indirectly determines the probability distri-
bution of distortion. When the number of packets per fiN js large, expressing this probability
distribution in terms of the BER is quite cumbersome and tedious. This task is, however, relatively
straightforward when each image fits into a single packet. Let this be the case. Under the assump-
tions that have been made about the error-control system, distortion is zeror iless bit errors
have occurred during the transmission of the packet. When the number of bit errors exceed the
number that can be corrected by the code, what happens depends on more specific details of the
error control system. Let us assume, pessimistically, thatjifl to L errors occur, each will cause
an error among information bits in the decoded file.

Assuming independent bit errors, the probabilitykdit errors in anL bit packet is given by
('}f)sk(l— £)M—k with € the bit-error rate (BER) which is determinedybthe signal-to-interference
ratio (SIR) at the receiver.

For the single-packet file, thexpected utilityof a file Ug (y) is

u(0) (ki (“:) 41— s)M—k> +

Prob of 0 to m bit errors

L

S <|\i:|>sk(1—s)'\"‘ku(k) (7.7)

k=m+1
7.4.4 Solution

The expected utility functiotlg (y) is a representative measure of the expected quality of each im-
age, given a transmission power levé],which determines the received SNR,Notice, however,
that the BER is 1/2 whep= 0, which means thatlz (0) > 0. To avoid technical problems involv-
ing “transmissions” with 0 powet) (y):=U (y)-U (0), the “earned” expected utility of an image, is
chosen as the representative quality figure of merit (see chapter 3 for a relevant discussion involving
error-intolerant data transmissions).

Since each bit lasts/R secs., Ris the transmission bit rate), the total energy consumed by the
transmission of the single-packet imagédel/R. Thus,ER-- MP images can be transferred with
E Joules. The transmitter wishes to maximize its total (earned) expected utility, and must solve:
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with h the path lossl the interferencelRR. the “chip rate” (a CDMA constant closely related to the
bandwidth) P the highest available transmission power, ﬁﬁd(Rc/R)hFT/l , the highest achievable
SIR.

It can be argued that for BER functions of practical interest, the grap?(y)fhas the S-shape
displayed in fig. 5.2. Then, by the argument given in section 7.3.4.1, the yaligich maximizes
U_(y)/y can be obtained by drawing a tangent from the origin to the grapE(xp)‘. This value
determines the transmission power, and solves the single user problem. In any case, it is discussed
in chapter 3 that itJ_(y) was convex, the optimal would occur at the highest available power level,
and that ifU (y) was concave it would be optimal to “operate” at zero power.

The preceding development also applies when each media file is divided into many packets.
Extending the preceding analysis to consider a multi-packet image file is conceptually simple, but
very tedious. The procedure to find the probability distribution of distortion is more cumbersome.
But once done, it is straightforward to find the “earned” expected utility of a file as a function of the
received SIRU_(y). The shape of the graph of this function should not be affected by the number of
packets per file.

7.5 Discussion

Media signals can be useful at various degrees of distortion. A proposed model captures this fact
mathematically, and enables its exploitation, when avoiding/reducing distortion requires the expen-
diture of limited resources. Two interesting problems involving a quality versus quantity trade-off
are formulated and solved. In one case, media files are offered at various degrees of distortion, at a
price that isdecreasingn distortion. A consumer willing to accept a higher degree of distortion, can
acquire more files. A more specific version of this problem involves an energy-limited transmitter
wishing to transfer many images over a wireless link. Spending more energy per packet reduces bit
errors, and hence distortion, but also leads to fewer images transferred.

Atthe core is a function relating the perceptual quality (“utility”) of an “imperfect” media signal
to its distortion; i.e., a quality-distortion (Q-D) curve. In the development, no specific “equation”
(logarithmic, logistic, etc) is imposed as a Q-D function. Rather, it is assumealihiduat is
knownabout this curve is that it belongs to certain family characterized by a “reversed” S-shaped
graph. The analysis follows from the general properties of this family; so that it appl&syto
Q-D curve, as long as its graph has the assumed shape. This shape contains as special case the
“sharp threshold” (step) often assumed in the literature, as well as many plausible Q-D relations
(convex, concave, “ramps”, etc). This level of generality is important, because the “true” Q-D
curve can only be obtained by psychophysical experimentation with human subjects. The actual
curve will, generally, depend on the specific targeted human user, and quite possibly on the specific
application. Because of its generality, this analysis and its conclusions are robust, and should hold
for many user/application combinations.
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Chapter 8

Data Rate and Power Allocation for
Throughput Maximization

8.1 Introduction

Modern wireless networks will accommodate simultaneous transceivers operating at very different
bit rates. Some of the transceivers may be transferring data, while others transfer media content,
such as voice, images, or video. Several technologies have been proposed to accommodate multi-
rate traffic in such networks. Reference [26] discuss several multi-rate schemes based on Direct
Sequence Code-Division Multiple Access (DS-CDMA). One such scheme is variable spreading
gain (VSG) CDMA, as described, for example, in [11]. In a VSG-CDMA system, each terminal’s
spreading gain is determined as the ratio of the common chip rate to the terminal’s bit rate.

The model discussed in this chapter is relevant to an interference-limited single-cell VSG-
CDMA system in which each data terminal can operate within a range of bit rates, which is assumed
continuous for tractability. An allocation specifying, for each active terminal, a choice of data rate
and power level is sought that will maximize the network weighted throughput. The weights admit
various interpretations, including levels of importance or priority, “utilities”, or monetary prices
(contribution to the network’s revenues). The traffic is assumed to be delay-tolerant (“best-effort”).

Similar situations have been considered by the literature. This formulation has much in com-
mon with that of [40]. Major differences between this reference and the present work include (a)
the weights (b) the “generalized” frame-success function adopted herein, and (c) the simplifying
linearization involved in the solution procedure given in the reference. Reference [16] seeks data
rates and power allocation, and consider a “sigmoidal-like” frame-success function, but focuses on
the downlink, does not consider weights, and provides a sub-optimal algorithmic solution based on
pricing. The present work has also many similarities with [37], which maximizes a fairly general
“capacity function”. But [37] does not consider weights, and assumes that the terminal’s data rates
are fixed exogenous parameters, as opposed to variables to be chosen optimally.

At the core of this analysis is the frame-success function (FSF), which gives the probability
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that a data packet is received successfully as a function of the terminal’s signal-to-interference ratio
(SIR) at the receiver. This function is determined by physical attributes of the system, including the
modulation technique, the forward error detection scheme, the nature of the channel, and properties
of the receiver, including its demodulator, decoder, and antenna diversity, if any. No particular
algebraic functional form (“equation”) is imposed as FSF. Rather, it is assumed that all that is
known about this function is that its graph is a smooth S-shaped curve, as displayed in fig. (8.1)
(see chapter 3 for further discussion of this approach). The development exploits properties derived
from this shape. Hence, the present analysis should apply to many physical layer configurations of
practical interest, as long as they give rise to an FSF that has an S-shaped graph, and satisfies certain
mild technical assumptions.

Below, a relatively simple optimization model relevant to uplink data transmission in one VSG-
CDMA cell is built. Afterward, an outline of the general solution procedure is provided. Then, the
two-terminal special case is completely solved analytically, including the verification of the second-
order optimality conditions. This case is thoroughly discussed, as it provides insights useful for
the general analysis. Subsequently, the analysis focuses on a specific N-terminal scenario. The
scenario studied is one in which a few equally “important” terminals share a cell with many “ordi-
nary” terminals. It is presumed that the system can accommodate all the important terminals at the
highest available data rate. But it is not clear how many, if any, of the ordinary terminals should
be set to operate at this high rate, in order to maximize the cell’s weighted throughput. A general
solution procedure for this scenario is given. Finally, the results given in this chapter are discussed,
emphasizing the technical limitations of this analysis.

8.2 General Formulation

8.2.1 Problem Statement

We seek to solve:

g?%?(iiﬁm(Gi,ai) (8.1)
subject to
¢ % 8.2)
i; 140
G>Gy ie{l,---,N} (8.3)

In this simple model,

1. N is the number of terminals.
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2. The throughput of terminalis defined af:Ti(G;, ), with

f(GiGi)

Ti(Gi,qi) := S

(8.4)

3. G =R:/R,i€{1,...,N} is the spreading gain of termingli.e., the ratio of the channel’s

chip rate R to the terminal’s data transmission r&gbits per second)Gg > 1 is the lowest
available spreading gain (determined by the highest available data rate).

. 0 is the carrier-to-interference ratio (CIR) of the signal from terminaiceived at the base

station.q; is defined as,

_ Rhi _ Qi
S1Phj+02 3N, Qj+0?
J#i J#

(8.5)

qaj .

with P the transmission power of terminglh; its “gain” (path loss) coefficientfj P := Q

its received power, and? a representative of the average noise power and, possibly, out-of-
cell interference. It is shown in appendix B, that with = 0, the CIR’s must be such that

Y ai/(1+aj) = 1 (constraint (8.2)) to ensure feasibility.

. The producG;a; , denoted ay; , is terminali’s signal to interference (SIR) ratio.

. Bi > 1is a weight, which admits various practical interpretations. Without loss of generality,

we set 1=, < --- < Bn. If only 2 classes of terminals are considered, Naylight weight”
terminals and\, “important” ones, then 31 = --- = By, @andP = Bny+1 = -+ = By,
with Ny +No = N.

. We assume that there is a real-valued frame-success function (FSF) which gives the probabil-

ity of the correct reception of a data packet in terms of the received SIR. We assume that this
function is such thaf (x) := fs(x) — fs(0) has the general properties of the generalized “S-
curve” discussed in chapter 2 (see fig. (8.1)), and that it has a continuous second derivative.
Becausefs(0) is very small, the difference betwedgand f is generally negligible. Never-
theless, this correction is made for technical reasons. It is stressed that no actual function is
used, except to provide numerical examples. Our analysis should apply to a wide variety of
physical layer configurations, as long as they give rise to an FSF with an S-shaped graph. To
provide numerical examples, we use the FSF corresponding, under suitable assumptions, to
non-coherent FSK modulation, with no FEC, and packet size 80, which is,

f(x) = [1—;exp<—)2(>]80 (8.6)

. Certain technical results require a few additional assumptions that are stated when needed,

and discussed at the end of the chapter.
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It is sometimes useful to observe that constraint (8.2) can be expressed as

N1
=N=1 8.7
;Hai (8.7)

In the development below, an asterisk used as a superscript on a variable denotes a specific value
of the variable which satisfies certain optimality condition. Terminals operating at maximal data
rate are referred to as “favored” or “favorite”, and terminals in the high-weight class are called

“important”, as opposed to “ordinary”. Some ordinary terminals may be “favored” in the sense that
they may be allowed to operate at the highest available data rate.

8.2.2 General solution procedure

The general procedure is as follows:

e Create an "augmented” objective function, combining the original objective function with
Lagrange multipliers and the constraint equations

e Set up the first-order necessary optimizing conditions (FONOC). This involves setting the
partial derivative of theaugmentedbjective function with respect to each variable equal
to zero. Moreover, inequalities of the for@y — G; < 0 contribute equations of the form
K (Go — Gj) = 0, (complementary slackness condition), wharis a Lagrange multiplier.

e Solve FONOC. Evidently, each equation of the fqgtGo — G;) = 0 requires that iG; > Go ,
then; must equal zero; and thatjif # 0, G; must equalGy. Both possibilities must be
considered separately while finding various solutions to FONOC. It is necessary that each
be non-positive, for a maximizer.

e A solution to FONOC provides a candidate for a maximizer. The second-order sufficient
conditions (SOSCjinayconfirm the candidate as a maximizer. This maximizer matybe
global. If the SOSC are not verified, then the solution is obtained by directly verifying which
of all the points satisfying FONOC vyields the highest weighted throughput.

8.3 Special Case: N=2

For pedagogical reasons, a two-terminal-only situation is considered first.
To be solved:

f (Glal) n Bf (Gzaz)
Gy Gy

subject toa10, =1 ; Gy > Gg ; G > Gg

Maximize (8.8)

It can be easily verified that for N=2, the constraint (8.2) reducegg = 1 . This also follows
from the fact that, with negligible noisay := Q1/Qz :=1/a>.
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8.3.1 Augmented objective function

The augmented objective function is

f(Glel) Bf(Gsz)
G1 + Gy +

2
@(G1,Gp,a1,00) = 7\(1—0(10(2)+_Zlui(Go—Gi) (8.9)

8.3.2 First-Order Necessary Optimizing Conditions (FONOC)

The FONOC can be expressed in vector form, with Gjq, as:

(vaf'(va) — f(v)) /GE — u
B(y2f'(v2) — f(y2)) /G5 — k2

|
© o o o

. (8.10)
f (yl) —)\02
Bf'(v2) — Aoy
010, =1
with ¢ p(Go—Gy1)=0 1 <0 (8.11)

H(Go—G2) =0 W <0

8.3.3 Hessian Matrix

In order to check the sufficient second-order conditions the Hessian matrix of second partial deriva-
tives of the augmented objective function , denote@zg, is needed. This matrix is given by:

P(Gy,01) 0 azf”(y1) 0
@, — 0 BW(Gz,a2) 0 Boo f"(y2) (8.12)
arf’(y1) 0 Ga1f"(y1) —A
0 Bozf"(y2) —A BG2f"(y2)

In equation (8.12), strictly for notational convenience, the funafiaa defined, withy, = G;a;, as:

$(Ga) = g | 100 W)+ () 813)

8.3.4 Finding the optimizer
8.3.4.1 Looking inside the feasible region

It is natural to start looking for a solution to FONOC that lies in the interior of the feasible region.
Thatis,u1 = o = 0 is set, which allows bot; andG; to be greater tha@ (see equations (8.11)).

8.3.4.1.1 An Interior solution to FONOC Working with the top 2 rows of the matrix equation
(8.10),yi f'(yi) = f(y;) is obtained, which is an equation of the general form:
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xf' (x) = f (x) (8.14)

Chapter 2 shows that for the class of generalized sigmoidal functions, suchtese is a unique
positive valueyy which satisfies equation (8.14). This value can be graphically identified in figure
(8.1) as the abscissa of the point where the graphistangent to a ray emanating from the origin;
that is, tangent to the straight liye= f/(yo)x.

Therefore, if any values of the variables of interest satisfy, under the stated hypotheses, equations
(8.10) and (8.11) , they must be such that:

101 = G305 =Yo (8.15)
By working with the bottom half of the matrix equation (8.10), it is established that:

F(Giog) _ BF(Gsay)

A=
*
a; ay

(8.16)

Now, substituting equation (8.15) into equation (8.16),a5 = B results, which leads to a complete
“interior” solution to FONOC:
G Yo/ /B

Gy VBYo

= 8.17
a \/E ( )
1/v/B

Notice that, in order for these values to be feasig > Go; i.e., Go\ﬁ < vo. Replacing these
values into the objective function yields

[y

[

a

N

L o_ [0 Bfw) _ f00)vB  Bf(v) (8.18)

Gi G; Yo Yo/B
This is a closed form solution. If the functiohis known,yp can be easily obtained graphically
(see figure (8.1)) or equation(8.14) can be solved numerically. For instance, for the FSF given by
equation (8.6)yo = 10.75, f(yp) = 0.83..
This allocation has an interesting property: it is ‘balanced’ in the sense that both users experi-
ence the same weighted throughpiityo) \/B/yo.

8.3.4.1.2 \Verifying the Second-order sufficient conditions To characterize the interior “sta-
tionary point” that was just found, the second order conditions, which dependg2pgrthe matrix
of second partial derivatives (Hessian matrix) of the augmented objective fuigction

Essentially, at a point satisfying the FOC, i.e., a “stationary” point, for any vd?ctdong a
feasible direction, the triple produBT(pZXXﬁ is positive if the “stationary” point corresponds to a
local minimum, and this product is negative if the stationary point corresponds to a local maximum.
If neither of these conditions hold, then the point is a “saddle point”.
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A feasible direction is one that is tangent to the curve representing the constraint relationship.
Hence, denoting the constraint curveté&:, G, a1,02) =0102 — 1 =0, only vectorsh satisfying
Obeh =0 needs to be considered, that is, vectors normal to the gradient of the constraint curve. At
the interior stationary point,

0 0
0 0
Ob = =

as 1/v/B
o VB

™ + O O

. T
Then, it is easily verified that any vectbof the form { ap a Pag —ag | ,wherethey's are
arbitrary real numbers, satisfiekbheh =0.

It will prove convenient to express such vector as the product of a “transformation” mdtrix,
T
times an arbitrary vect@=| a; a, a3 } . Itis trivial to verify that

1 0 O

01 0 A
M = issuchthat A2 M x | ay

00 B

0 0 -1 %

satisfies the desired condition.

In terms ofM andd, the second-order conditions for the stationary point under consideration
can be re-stated as follows. At such point, for any veatdhe produc&’M T @M is positive if
the stationary point corresponds to a local minimum, and this product is negative if the stationary
point corresponds to a local maximum. If neither of these conditions hold, then the stationary point
is a “saddle point”.

Because the components afire arbitrary, the above conditions can be expressed in terms of
the matrixM T@,M . This matrix ispositive definiteif the stationary point corresponds to a local
minimum, and it isnegative definitéf the stationary point corresponds to a local maximum. If this
matrix isindefinitethis point is a “saddle point”.

The matrix of second-partial derivatives is given by equation (8.12), which must be evalu-
ated at the point of interest, given by equation (8.17). For these vaf?esbecomes, with

Po = '(yo)/ " (Yo):

P01 o0
S
0O = O 1
(pzxx = Vob Yo \@f” (YO)
1 0 s —Po
0 1 -po Byo

Some algebra yields:
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B o 1 0
MTx @y _ | L0 1
Bf” (VO) Yo
Ve B -1 Yot+po —B(Yo+Po)
And some more algebra yields:
B 0 B
MT x @2, x M oo
—\/Bf” Vo) =10 5 -1 (8.19)
B —1 2B(Yo+po)

Given the development in chapterf?(yo) is negative Thus, if the matrix(MTg2,,M) /f”(vo) is
positive definitehe point being tested is a local maximum. If all three principal minor determinants
of a matrix are positive, the matrix is positive definite.

The first determinant is simply the first element of the matrix, which clearly is a positive number.
The second determinant i$\%, which is also positive. However, after some algebra the determinant

of the whole matrix is obtained as: ,
2Bf'(yo)

Yo" (Yo)
But, this expression is negative, because the first derivative isfpositive everywhere, and its
second derivative is negativeyat

Hence, the first two principal minor determinants are positive, while the third one negative. The
concerned matrix igndefinite Therefore, the interior stationary point is neither a local minimizer
nor a local maximizer. It is &addle point”

8.3.4.2 A Single Favorite Boundary Solution (SFBS)

In the preceding section, an interior solution to FONOC was identified. But that allocation is a non-
maximizer, which suggests that a maximizer be sought over the “boundary” of the feasible region;
i.e., whenG; = Gg for one or bothi. Below, single favorite boundary solution (SFBS) solution,

in which the important terminal is the only one transmitting at the highest allowable data rate, is
found. That isG, = G, andp = 0 (which allowsG; > Ggp) are set. (With only two terminals, the
phrase “single favorite” is redundant, since there can be at most one favorite. But the phrase is kept
because it has a similar usage in the poly-terminal scenario)

8.3.4.2.1 Finding the SFBS For the reader’s convenience, equation (8.10) is reproduced below:

(yaf'(y1) = f(v1)) /GE —
B(y2f'(v2) — f(y2)) /G5 —
f'(y1) — Aaz
Bf'(y2) — Aoy

o O o o
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Working with the first row of equation (8.10), and keeping in mindfihat O has been set,
G101 =Yo (8.20)

is obtained, withyy as defined by equation (8.14).

Working with the bottom half of equation (8.10), and using the preceding result, it is established
that:

f'(y)) _ A Bf'(y2) (8.21)
0> o1 '

Combining equations (8.20) and (8.21), one obtains
Gat'(vo) / x*t'(x) _ G§
= pf GOz, = = 8.22
Gotl Bf'(y2)Goa2 o)~ B (8.22)

with x := Gpa2 = y». Hences is obtained by solving equation (8.22).

It is observed that, for the class of functions being consideddd(x) is a “bell-shaped” func-
tion, as shown by figure 8.1.

o<f'(x)

Figure 8.1: A particulaf (x) , xf'(x), andscaledversions off’(x), andx?f'(x). yo satisfiesxf'(x) =
f(x)

This implies that, ifG(Z)/B surpasses the “peak” of the function on the left hand side of equation
(8.22), then, this equation has solutions. IfG/ is sufficiently small, two values ofwill satisfy
equation (8.22). Denote the chosen valuégas

Now the second row of equation (8.10) yields the multiplier associated with the con&gaint
Gy, <0as

_ 8 f'(30) — f(3o)
G5/B

2 (8.23)
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It is necessary for a maximizer that < 0. This condition is best interpreted by writing it as

G3 >d
Y, = t4 <
gle=tg(fOm| <o
The development in chapter 2 shows that, for the class of functibe@ng considered, the derivative
of f(t)/t is positive fort < yp, is zero atyp, and is negative for > yp(with yp defined by equation

(8.14)). Thus, in order fod, to lead to a maximizer, it is necessary that
3 > Yo (8.24)

As displayed in figure 8.1, it is possible that everG@/B falls below the maximal value of the
functionx?f’(x)/ f'(yo), it may still be too high, because the resulting intersection points may both
be less thary, which would violate a necessary condition for a maximizer.

In view of the preceding development, of the two values satisfying equation (8.22), the larger
value, to the right of the peak, is chosen as a prospective maximizer. Thatsghe largest value
satisfying:

& f'(30) _ G§

f'(vo) B

In terms ofdy, a complete solution to FONOC is identified. By definitidg= Goa2, which implies

thata = 89/ Go satisfies FONOC, and obviously so degs= 1/a3 = Gg/dy. And since FONOC
requires thaGja; = yo, thenG; can be obtained ag/a; = Yodo/Co.

(8.25)

Hence, the following single-favorite solution has been found:

Gi Yodo/Go

Gf = Go (8.26)
a 1 Go / 50

a 3 60 / Go

But feasibility requires thab; > G, which imposes thaﬁ;g < oo, in addition to the requirements
discussed in the preceding paragraphs. But by defindiomust satisfy equation (8.25). Thus,
G3 < Yodo implies that

B35 (%0)

: < YoBo — Bof'(30) < Yof'(Yo) = f(Yo) (8.27)
f’(vo)

It is observed in figure 8.1, that the functiari’(x) has a bell shaped graph. Thus, in order for
condition (8.27) to be satisfiedy must be significantly larger thaw. This further limits the
highest value of the ratiG3/[ for which the SFBS exists.

For the frame-success function introduced previously as equationy@-6),0.75, andf (yo) =
0.83. WhenGy = 2 andp = 2, bothx = 22.1 andx = 3.97 satisfy equation (8.22) . Hen@®,=22.1.
This givesTsess= 1.01. By comparison, the ‘balanced’ solution only yielis= 0.15,/2 = 0.21,
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which is much less.

8.3.4.2.2 Second-order sufficient conditions As discussed in section 8.3.4.1.2, the optimality
of the SFBS depends upon the matpix, given by equation (8.12). Essentially, at a point satisfying
the FONOC, i.e., a stationary point, if fanyvectorh along a feasible direction the triple product
AT x @2, ¥ his positive, then the stationary point corresponds to a local minimum, and if this
product is negative then the stationary point corresponds to a local maximum.

A feasible direction is one that is tangent to the curve representing the equality constraint, as
well as to any curve corresponding to an “active” inequality constraint. An “active” inequality
constraint is one satisfied as equality. In the case under discussion, exactly one inequality is pre-
sumed to be activeGy — G, < 0, sinceG; = Gp. Hence, denoting the equality constraint curve
asb(Gy, Gy, a1,02) = 0102 — 1 =0, and the active inequality @G, Gp,01,02) = Go— Gz =0,
only vectorsh satisfyinglb e h = 0 AND Od e h = 0 need to be considered. It is immediate that;

0"=[0 0 ap a1 |=[0 0 & oy (8.28)

ay
—Dde—[o 10 o} (8.29)

. T
Thus, only vectord of the form [ a 0 —aia a—llaz } with a; anday arbitrary, need to be
considered.

The matrix of second-partial derivatives is given by equation (8.12), which must be evaluated at
the point of interest, given by equation (8.26). For these valp&gs becomes:

Do) 0 (o) 0
@, — 0 Bwoo 0 R 1)
80 0 ) -
0 RR2(&) —Bf(%) BGof"(80)
with )
UJ00—3{ (Yoo) — Yoo’ (Yoo) + ch)o (Yoo)
0
Forh™ = [ g 0 - #a } x @2, is obtained as
3
waf) 0 @) 0
_Gog, & 0 BUY(Gz,02) 0 Baxf”(8o) |
[ ar 0 5(())a2 a2 } @f// 0 Mf” _%f/ B
3o (Yo) Go (Yo) Go (%0)

0 P& -5f() BGof’ ()
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i Gt (vo) G5t (vo) T
o, 1T g %
B62f// 50
OGZ( )a2

—Yof"(yo)az
l3( "(80) +30f"(30)) @2

Now, h' x @2, ¥ h is obtained by scalarly multiplying the vector just obtained by the vector

G0

.
[al 0 —aia q—llaz} , which yields :

ig " 2 GZ G2

V063 (Yo)az — 52 21" (Yo)ay az_éiof "(Yo)araz +
G 5
SO0 11 (o) + 01/ (B0 + oo (Bo)ed + S0 1(80)e
0 0
This can be simplified as,
G2 G3 G
yggf”(v) 255’f”(Vo)a1a2+%wf”(Vo)a§ +
62
201/ (Bg)eb+ 201800 =
G
G‘”"f”(y)(vzg2 a 2&a1a2+a%> Ea% (280f'(80) + 351" (30)) =
G'gZOfN(VO) <y(03§0a1_a2> +BGOa% (260f/(60)+6(2)f//(60))

The first term is clearly negative, since the development in chapter 2 showg thaturs to the
right of the inflexion point off, where this function is concave. The second term is also negative,
because & f’(8) + 83f"(3o) equals the derivative of the functio f'(x) evaluated afy. It is
observed in figure 8.1 tha?f’(x) is a bell-curve. Thus, iy is to the right of the “peak” of this
function (see discussion immediately preceding equation (8.25))x) is decreasingat &, which
means its derivative isegativeat dp.

8.3.4.3 *“Greedy” allocation

The preceding section considered the SFBS, in whidk the “important” terminal operates at the
lowest available spreading gain (highest data rate). It was observed that the SFBS fails to exist or is
infeasible ifG3 6/B is “too large”. This section seeks a “greedy” (favoriteless) solution to FONOC,

in which both terminals operate at the highest available data rate. Specif@aHyG, = Gg is set.

8.3.4.3.1 Describing the greedy allocation For the reader’'s convenience, equation (8.10) is
reproduced once again:
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(yaf'(yr) — f(v2)) /GE — i 0
B(y2f'(y2) — f(y2)) /G- | | O
f/(y1) — Aotz lo
Bf'(y2) — Aoy 0

Working with the last two rows of equation (8.10) it is established that:

Ay ) _ BF(y2)
Y2/Go  Y1/Go

= y1f'(y1) = By2f'(v2) (8.30)

with the constraint
yiyz = G3 (8.31)

In order to satisfy the general first-order necessary optimizing conditions (FONOC), the SIR’s of
the important and the ordinary terminals, denoted respectivelyaasly, must satisfy equation
(8.30), as well as the constraint equation (8.31). Equations (8.30) and (8.31) form a system of two
non-linear equations in two unknown which is in principle solvable, and may even be reduced to a
single-unknown equation. The solution is best described graphically, through figure 8.2.

It is observed that, for the class of functions being considered, the graph(bf is “bell-
shaped”, as displayed at the top of figure (8.2). That is, there is exactly onetpainihich this
function has a global maximum, and for evén< t* there is a, > t* such that; f'(t1) = t2 f'(t2).

Thus, for every paixp,y2) which satisfies equation (8.30), wity > t* andy, > t*, there is a
corresponding paifxs,y1), with x; <t* andy; < t*, which also satisfies this equation, and so do
(X1,Y2), and(Xz, y1).

For a value ofx (the SIR of the important terminal), there are two valuey ¢the SIR of the
ordinary terminal) which satisfigd f'(x) = y f'(y). When all pointgx,y) satisfying this equation
are plotted, an “X-shaped” graph arises, as shown at the bottom sub-figure of figure 8.2. For a
fixed 3, this graph has four distinct branches. The “North-East” branch corresponds to points like
(X2,Y2) (top sub-figure), which satisfgx, f'(x2) = y2f'(y2), and are both to the right of the peak of
xf'(t). The “South-East” branch corresponds to points lkg) ), which also satisfiex, f'(x2) =
y1f'(y1), with y; to the left of the peak. Analogously, the “North-West” and “South-West” branches
corresponds to points like,y2) and &i,y1), respectively, in the top sub-figure. WhBn= 1, all
four branches have exactly one common point. In that gasex always satisfies equation (8.30),
but another possibility exists for amyin the SE branch.

But in order to satisfy FONOGC; andy must also satisfy the constraint equation (8.31). Plotting
on the same axes this constraint, gives rise to the hyperbolic (L-shaped) curves. The intersection
points between the L-shaped and X-shaped graphs for the @dgeld) pair lead to feasible solutions
to FONOC.

8.3.4.3.2 Eliminating some candidates Itis necessary that = (v f'(vi) — f(yi)) /G (obtained
from the top two rows of equation (8.10)) be non-positive, for a maximizer. This condition is best
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interpreted by writing it as

G =23 (f(r)/1) <0 (8.32)

dt -y

That is, in order for a considered point, &0, Go, y/Go, X/Go), to be a maximizer, it is necessary
that the derivative of (t) /t be non-positive when evaluatedxaiand also when evaluatedyatThe
development in chapter 2 shows that, for the class of functfobsing considered, the derivative
of f(t)/t is positive fort < yp, is zero atyp, and is negative for > yp(with yp defined by equation
(8.14)). Thus, in order for the poiiGo, Go,y/Go, X/ Gop) to be a maximizer, it is necessary that

min{x,y} > Yo (8.33)

Figure 8.1 shows that the valygsatisfyingt f'(t) = f(t) occurs to the right of the peak of the graph
of xf'(x); that is,yo > t*, wheret* is the value that maximize<'(t). Whenyp > t*, only points

in the NE “leg” of the “X” can be maximizers, since a p@i;y) in any one of the other branches
would have at least one the coordinates less thatHowever, the possibility thaly < t* hasnot
been ruled out, theoretically.

8.3.4.3.3 Verifying the Second-order Sufficient Conditions Suppose that the andX graphs
intercept atx,y) = (x, GZ/x).

As discussed in sections 8.3.4.1.2 and 8.3.4.3.3, a point satisfying FONOC leads to a (local)
maximum, if at such point, faanyvectorh along a feasible direction, the triple prodiétx @2, ¥ h
is negative.

Afeasible direction is one that is tangent to the curve representing the equality constraint, as well
as to any curve corresponding to an “active” inequality constraint. In the case under discussion, both
inequalities are presumed active. Hence, denoting the equality constrh{i@a&;,01,02) = 1—

o102 =0, and the inequality constraintség Gy, G, 01, 02) = Gog— G1 = 0 anddy(G1, G2, a1, 02) =
Go — G, = 0, only vectorsh satisfying(b e h = 0 AND [Od; e h = 0 need to be considered. It is
immediate that:

Dsz—[o 0 a al}:—Glo[o 0 x y} (8.34)
~0df=[1 0 0 0] (8.35)
—DdT:[o 10 0} (8.36)

. T
Thus, only vector$ of the forma[ 0 0 -y x } with a arbitrary, need to be considered.

The matrix of second-partial derivatives (reproduced below) is given by equation (8.12), which
must be evaluated at the point of interest.
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(x1,y1), (x2,y2), (x1,y2) and (x2,y1) are possible solutions to Bh(x)=h(y)

ph(t)
< h(t)
0
0 XY Y2 %
SIR
"X-shaped" graphs showing points (x,y) satisfying Bh(x)=h(y)
NW o N
=G
B> - Higher G0
T Rare »
b .
- >1
> . ~1
(x;y4)
xy=G(2) Low G SE
SW 0
0
0
x (SIR)
Figure 8.2:

With the SIR of the important and ordinary terminal denoted, respectively,aasly, FONOC
requires thaBh(x) = h(y) (eq. (8.30)), witth(t) :=tf’(t). Any of the pairgXs,y1), (X2,¥2), (X1,Y2),

or (x2,y1) (top) satisfies this equation, but may not be feasible. Plotting all such points reveals an
“X-shaped” graph (NE, NW, SW and SE are directional labels). Plotting on the same axes the
constraint equation (8.31) gives rise to the hyperbolic (L-shaped) curves. The intersection points
between the L-shaped and X-shaped graphs for the giBgi8) pair lead to feasible solutions to
FONOC. WherGy is “large”, the “L” intersects the NE leg of the “X”, which yields a maximizer.

If G is low enough, the hyperbola "Ldnly intersects the SW leg of the X-curve, which leads to a

minimum.
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W(Gy,01) 0 ayf”(y1) 0

@ - 0 BY(Gg,a2) 0 Bozf"(vz)
X af”(y1) 0 G1f"(y1) —A

0 Bozf"(y2) -A BG2f"(y2)

At the point(Go, Go,Y/Go, X/Go) =(Go, Go, Go/X,X/Go), taking into account that, from equation
(8.30),

Gof’(y) _ ¥ o BGof'(x) _ Px .,
” Gl W) Y Gy f(x)
@2,, becomes:
x* 0 * 0
0 = 0 *
“ux= 1, 0 Gof”(y) —&yf'(y)

*

0+ —&xf'(x) BGof”(x)

(An asterisk denotes a non-zero element of this matrix that will not be needed, given the form of the

vectorsh being considered.)
Forh' = [ 0 0 -y x },HT X (2, is Obtained as

[ 5 —Goyf(y)— £XRF(x) &y’ H(y)+BGoxf"(x) |

iﬁTxcpzxxxﬁ:yzf“(y) Exyf xyzf )+ Bx2 " (x)

Observing thaky = G%, the preceding sum can be written as:

Bx ' (x) -+ B2 " (X) +y ' (y) +Y* £ (y) = Bx (' (x) +x (%)) +y (F'(y) +y"(y))

Thus, if the sumBx(f'(x) +xf"(x)) +y(f'(y)+yf”(y)) is negative, the tested point is a (local)
maximizer, and if the sum is positive, the point is a minimizer. A deeper understanding of this
condition is gained by re-writing the sum as:

Bx % (tf'(V) t_X+y§'t trw) (8.37)
As displayed at the top of figure 8.2, the graph of the functiitt) is “bell-shaped”. Thusf’(t)
has a global maximum at a specific value, sgyand its derivative is positive fdr< t*, is zero at
t*, and is negative otherwise.

If the point being tested lies on the NE leg of the X, batandy are to the right of*. In this
case, both terms in the sum (8.37) are negative, and the tested pomaisraizer Likewise, if the
tested point lies on the SW leg of the X, botlndy are to thdeft of t*. In this case, both terms in
the sum (8.37) are positive, and the tested pointisramizer If the tested point lies on any one of
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the other two legs of the X, it is not clear, a priori, whether the sum will be positive or negative.

8.3.4.3.4 The symmetric special cas@ & 1) Considering the special case in whighl pro-
vides further insights into the general greedy allocation. In this special case, it is evident that
x=y=Gp (01 =0y = 1) (equal received powers) satisfies equation (8.30) and the constraint equa-
tion (8.31), and hence FONOC. In this case, the sum (8.37) can be written as
d !
2Go (tf'(t)) o

whose sign is determined by the position@f with respect to the valugthat maximizeg f'(t).
The equal-received power allocation is a maximiz&gjf> t*, and a minimizer iiGo < t*.

In particular, for the function given as equation (86),(x) reaches its maximum &t = 7.95.
Thus, in this example, witB = 1, y1 = y» = Gg is a maximizer foiGy > 7.95, but a minimizer for
Gp < 7.95.

8.3.5 Discussion of the special case

The optimum power levels and data rates for two terminals transmitting to one base station, in a
scenario relevant to variable spreading gain CDMA, have been derived. The objective function is
the weighted network throughput, where the weights admit various practical interpretations, includ-
ing monetary prices paid by the terminals. The analysis identifies three allocations satisfying the
first-order necessary optimality conditions (FONOC): (i) a “balanced” allocation, in which both ter-
minals operate at the “preferred” SIg, and achieve equal weighted throughput; (ii) an “unfair”
assignment in which the important terminal operates at the highest available data rate, with the other
terminal achieving the SIR); and (iii) a “greedy” assignment in which both terminals operate at

the highest available data rate.

The balanced assignment is always suboptimal, implying that “fairness” (in the sense of equal
weighted throughput) comes at the expense of performance. The important terminal should always
operate at maximal data rate. Only when the r&g./B is larger than certain threshold determined
by the physical layer through the FSF should both terminals operate at maximal daGyristéhe
smallest available spreading gain ghi$ the weight of the favorite terminal). This makes intuitive
sense, because wh&y is “large”, the highest available data rate is relatively small, and keeping
only one terminal operating at maximal data rate is not appealing, unless that terminal has “a lot of
weight”. However, when the highest available data rate is very high, an allocation in arlicbne
terminal operates at this rate is more appealing.

The “greedy” allocation is particularly treacherous, which is particularly clear when both termi-
nals are equally weighted. In this case, an equal-received-power assignment satisfies FONOC. But
this assignment can lead to either a maximum or a minimum, depending upon wBgtaeeds
a specific value determined by the physical layer.

It is significant that the greedy and the unfair allocations are complementary in this sense: a
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low Gg (highest available data rate is large) may turn the greedy allocation into a minimizer, but the
unfair allocation, which is a maximizer, needs a I8@yin order to be feasible.

8.4 Throughput Optimization with N terminals

In the preceding section, the 2-terminal weighted throughput maximization problem is completely
solved analytically, including the verification of the second-order optimality conditions. This special
case illustrate the general solution procedure, and provides insights useful for the general analysis.
When N terminals are present, the analysis is more complicated. In particular, verifying the second-
order conditions symbolically does not appear practical. However, identifying the set of points
that satisfy the first-order optimality conditions (FONOC) is quite useful, because these points are
relatively few. Thus, for a given physical layer and system parameters, the optimizer can be found
by directly verifying which of these points yields the highest weighted throughput.

The present section focuses on a specific N-terminal scenario. The scenario studied is one
in which a few equally “important” terminals share a cell with many “ordinary” terminals. It is
presumed that the system can accommodate all the important terminals at the highest available data
rate. But it is not clear how many, if any, of the ordinary terminals should be set to operate at this
high rate, in order to maximize the cell’s weighted throughput. A general solution procedure for this
scenario is given. The cell-throughput maximizing data rates (through the corresponding spreading
gains) and the transmission power levels (through the corresponding carrier-to-interference ratios)
for all terminals are specified.

8.4.1 Augmented objective function

The pertinent augmented objective functiof&s, . ..,Gn,01,...,0N) =

ai

N N N
_;BiTi(Gi,Gi)—i-)\ (_ZHO“ —1> +_;M(G0—Gi) (8.38)

8.4.2 General First-Order Necessary Optimizing Conditions (FONOC)

The general FONOC can be expressed in vector form, withG;q;, as:

B10T1(G1,01)/0G1 — ] 0
BNOTN(GN,GN)/OGN — KN . 0 (8 39)
Buf'(yo) +A(1+01)2 | | O '
Buf'(w)+A(1+on) 2 | | O
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SN, (1t a) T =N-1

Gyp—G;)=0
with Ha(Go _ ) (8.40)
Un(Go—Gn) =0
Notice that oT(Grat) i) — ()
i(Gi, dj YiT(Yi) — Ty
= 41
0G; Giz (8.41)

In order to verify the second-order sufficient conditions one needs the Hessian matrix of second
partial derivatives of our augmented objective function, denoteagl,ad-or N = 3, this matrix can
be written as:

Yy 0 O w O O
O ¢gpp 0 O w O
0 O 0O O
B — Ps ws (8.42)
w O 0 X1 0 0
0O wop 0 0 x2 O
i 0O O w 0 O X3
Where, for notational convenience, :
o TG o) o YE ) +2(F () —vif (w)
Wi = Bi 3G? =B~ G? (8.43)
Xi == BiGif" () —2A(1+0ai)° (8.44)
and
= oii f (i) (8.45)
The generalpx can best be expressed as :
D11 D12
Gux = (8.46)
) D12 D2
In equation (8.46)D11, D22 andD1; areN x N diagonal sub-matrices, defined as:
D11: diag(Lpl,...,l.IJN) (8.47)
D22: diag(xl,...,xN) (848)
D12 = diag(wy, ..., wN) (8.49)

with i, x; andwy defined by equations (8.43,8.44,8.45) respectively.
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8.4.3 Solving FONOC
8.4.3.1 Looking inside the feasible region

It is natural to start looking for a solution to FONOC that lies in the interior of the feasible region.
That is,l; = 0 is set, which allows5; to be greater tha@, for eachi (see equation (8.40)).

8.4.3.1.1 Identifying an interior solution to FONOC From the top half of the vector equation
(8.39),vif'(yi) = f(vi) is obtained. Therefore, from the discussion following equation (8.14), it
follows that

Giai =Yo (8.50)

From the bottom half of the vector equation (8.39), it is established that:

~A=Bif(Gray) (L+07)? = B f'(Gjot) (1+0a?)” (8.51)

Now, replacing equation (8.50) into equation (8.51) yields :

1 v/ Bi/Bi (8.52)

1+ar  1+af

aj (j > 1) can be expressed in termsoafthrough equation (8.52). This way, the constraint relation
(8.7) can be turned into an equation which can solvedifor

YL v/Bi/B1

-1 8.53
1+aj ( )

=N-1=a]=

(N-1)

with B; =1, and
N
B:= Bj (8.54)
2/

Once the value ofr} is known, equation (8.52) gives the value of eagh And once eaclufis
known, equation (8.50) yields immediately the correspon@h@syo/a;. Therefore, a complete
“interior” solution to FONOC has been found in closed-form solution :

B
G+l = — (8.55)

(N-1)/Bi

G = yo/qof (8.56)

Notice that, in order for these values to be feasilig= yo/a; > Gg or a; < yp/Gp. Under the
construction 1= 1 < --- < By, the largest; is actuallyaj (see equation (8.55)). Thus, this
condition requires tha =3 ; \/Bj < (N—1)yo/Go.

It is stressed that this is a closed form solutiog.can be easily obtained from the graph of
function f (see fig. (8.1)), or equation (8.14) can be solved numerically.
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It is noteworthy that, if3; = 1 for all i (terminals are equally “important”’B = N and equation
(8.55) reduces ta; = 1/(N —1). Thus, all terminals enjoy the same throughput.

8.4.3.1.2 Isthe interior solution to DNOCa maximizer? A procedure similar to that applied

in section 8.3.4.1.2 can show that the previously found allocation (equations (8.55 and8.56)) is
neither a maximizer nor a minimizer, but a saddle point. But it is straightforward to argue that this
allocation isnotthe global maximizer.

The non-optimality of the interior solution  Each terminal, regardless of its weight, operates
with an SIR ofyy. The spreading gaiG; is obtained agp/a; with a; given by equation (8.55). This
equation yields an; that is inversely proportional tg/E. Thus, the largedt; is that of terminal 1,
which has the lowest weight, and the smallesis that of terminaN. Thus, the terminal with the
least weight operates with the smaller spreading Gajmvhich means the highest data rate of those
assigned, whereas the terminal with the most weight operates with the lowest data rate, of those
assigned!

This allocation does not maximize the weighted throughput. Simply re-assigning itheuch
a way thato] is assigned to termind , anday, is assigned to terminal 1 produces a still feasible
allocation that yields a higher weighted throughput. Specifically,

k _f(GiGi> o N f(VO) N Kk " Ay *
i;ﬁl G, _i;BI Yo/a' Di;&% =071+ iZZ Bioj + Bnay (8.57)

By assigningnj to terminal N andxy, to terminal 1, the preceding sum is replaced by

N-1
ay + ;BiGHBNG’i (8.58)
i=
Subtracting (8.57) from (8.58) yields
Bn(a1—ay) — (ag—ay) = (a—ay)(Bn—1) >0
Thus, (8.58) is an improvement over (8.57). The interior solution to FONOC is a non-maximizer.

Second-order sufficient conditions The optimality of this stationary point depends upon
the matrix of second partial derivatives (Hessian matrixypobur augmented objective function,
denoted aspx. Essentially, if at a point satisfying the FONOC, i.e., a stationary point, for any
vectorh along a feasible direction, the triple prodtﬁﬁi[(g(dﬁ is positive, then the stationary point
corresponds to a local minimum, and if this product is negative then the stationary point corresponds
to a local maximum. If neither of these conditions hold, then the point is a “saddle point”.

A feasible direction is one that is tangent to the curve representing the constraint relationship.
Hence, if we denote our constraint curve@6;, Gz,01,d2) =0, (i.e.,b(Gy,...,Gn,01,...,0N) =
N—1— ZiN:1(1+ a;)~1), we only need to consider vecttfmatisfyinng eh=0, that is, vectors
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normal to the gradient of the constraint curve. For us,

[ 0b/0G; | 0
b= | 9796 | _ 0 » (8.59)
db/day (14a3)
| ob/dan | | (1+af)? |

but at our interior stationary point,” is given by equation (8.55). Therefofeb becomes

0 0
—-12] 0 0
oo (N=22{ 0 850
B B1 B1
| By | [ BN
. T
Then, it is easily verified that any vectbrof the form [ a - ay b1 -+ by ] , Where

the a’s and bj’s are real numbers, WitPZiN:l Bib; = 0, satisfieslb e h = 0. That is, the vector

T 5 T
b:=| by --- by } must be orthogonal to the vectr= [ Br1 - PBn } .This will happen,
for instance, iy = — (3N Bibi) /Bn-

It will prove convenient to express such vector as the product of a “projection” mtriky

T
an arbitrary vectos := [ a; --- ay b1 -+ bnoz } of length 2N — 1. Let us describe this
process for the special case in whigh= 3. Subsequently, we will generalize it.

With N=3, the matrixM takes the form

100 0 O
010 0 O
001 0 O
000 1 O (8.61)
000 0 1
000 B _B
L 3 Bz
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T
sothatwithd:=| a; a, az by by ] an arbitrary 5-dimensional vector,
_ o -
a
as
b1
by
| (—Babr—B2b2) /Bs |

(8.62)

T
It is easily verified that the scalar product of the vedtbixdby | 0 0 0 B1 B> B3
O Ob always equals zero.

For a generaN, the desired matrix has the form:

In 0
M = 0 IN_1 (8.63)
Oxn T

(compare equations (8.63) and (8.61)), whieyalenotes the identity matrix of si2¢, O denotes
the zero matrix of appropriate dimension,.Q denotes an all-zero row of lenghh andr is a row
vector of lengthN — 1 of the form:

1

r:_BiN Br -+ Pnoa

The second-order conditions for the stationary point under consideration can be expressed in terms
of the matrixM T x @ x M . If this matrix ispositive definitethen the stationary point corresponds

to a local minimum, and if it is1egative definiteéhen the stationary point corresponds to a local
maximum. If this matrix igndefinite then this point is a “saddle point”. A square matrix is positive
definite if all its principal minor determinants are positive.

WhenN = 3, @3, is given by equation (8.42), in terms ¢f , X; , andwy. After some algebra,
we obtainM T x @3y, =

gy 0 0 w 0 0 |
0 0 0 w 0
0 0 w3 0 0 s
w O —%033 X1 O —%Xs
| 0w s 0 Xo —fXs |




91

And some more algebra yieldd" x @3, x M =

g1 0 O Wy 0 T
0 U 0 0 (V)
B B
0 0 s TR W2 (8.64)
o 0 —fa x+(f)xe B
2
0 @ —fus BExs xet(B)xe

At this interior stationary point, (see equations (8.55,8.56)), the elements of this matrix can be
written as (recall thaG; a;" = yo):

B (@)
f”(vO)_B'(Gr)3_B' Yo
W' _ ant
f7(yo) Py
and, since
Xi =

BG " ()~ 2 (1+af) =
B0 17 (yo) + 2 [Bif (v0) (1 7] (14)° =

Bif" (vo) <£ +2 ::,((\\/;;)) (1+0‘i*)_1>

it is convenient to set .
Xi

7 (yo) BiXi
where, for notational convenience,
- ._ (Yo, 2po
%= (ar ; 1+ar) (8.65)
is defined; and )
. fv)
Po = 7 (yo) (8.66)

Hence, at the point being tested, equation(8.64) leat'te @3, x M / " (yo) =
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[ B g 0 Bi01 0o |
o B2 o 0 Boa
Yo , 2U2
0 0 Paty —B103 Bo03 (8.67)

Yo A -
oz 0  —Piosz PiXi+t % %

3
. B
| 0 Bz —Peos ngix?, BoX2+ Lé>3<3

The objective is to test whether the mathk™ x @ x M is negative definite, which would
confirm the interior stationary point as a maximizer. It has been shown in chapter 2 that for the class
of functions being considered! (yp) is always negative. Therefore, an equivalent test is whether
the matrixM T x @ x M /" (yo) (€quation (8.67)) is positive definite.

A matrix is positive definite if and only if each one of its principal minor determinants are
positive. It is immediate that the determinants of the first three principal minors of the matrix given
in (8.67),

Boi o o
3 prog Yo
Yo 0 =22 Yo 3
Yo 0 o P
Yo
are all positive.
The fourth principal minor is
(B0 0 P |
3
o EBX o 0
3
0 © % —Baas
~ 2,\
| Bion 0 —Paas BlX1+%_

whose determinant is

Biad
3 ;o . 0 B101
B205 Baal _
Vo 0 = —B103 =
B2X3

Biar —Proz Pkt
B203 . %3\ BiPsada3
T [(Ble‘i’ Bs > V%
_ PiBsafa3 B?O%G?} _
Yo Yo
BiBoodada3 [Bg>“<1+[31§<3 B Bl}
V(Z) Yo ap O3

The question is then whether

+

(B1X3 + BaX1) S Yo <I33 + Bl)

a; a3



93

i.e, (replacingy; with its defining expression (8.65)), whether

BiYo , 2B1po , BaYo = 2B3po <

+ >
a3 1+as aq 1+aq
Bavo , Bavo
az a3

i.e., whether

2B 2B33 <

<1+a3+1+a1>p0 > 0 (8.68)

Observe that for the class of functions being considepgds f'(yo)/f”(yo) is always negative,
becausef’(x) is positive everywhere, and it has been shown in chapter 2fthgg) is negative.
Therefore, the left-hand side of inequality (8.68 ) is less than zero, which proves that the determinant
is in factnegative

In summary, the first three principal minor determinants @ositive while the fourth such
determinant imegative This implies that the concerned matrixiglefinite Therefore, the interior
stationary point is neither a local minimizer nor a local maximizer. Itsaddle point

8.4.3.2 Single-Favorite Boundary Solution (SFBS)

An allocation satisfying FONOC, where every terminal’s data rate is less than the highest available
value (equations (8.56,8.55)) was found. Unfortunately, this allocation is not the desired maximizer.
This indicates that the true maximizer is a non-interior solution to FONOC; i.e., a solution in which
one or more terminals operate at the lowest available spreading gain (highest available data rate). In
principle, the number of possible non-interior solutions could be very large, of the ord&r &f 2

basic rationale is needed to systematically search for these solutions.

A reasonable starting point is to to seek an allocation satisfying FONOC in which only the
spreading gain of the “most important” terminal is set at the lowest available v@ju@.e. this
terminal operates at the highest available data rate), with other terminals’ spreading gains to be
determined by the analysis. This is done below by setBg= Go, andy; =0 for 1<i < N.

8.4.3.2.1 General form of SFBS The firstN — 1 rows of the vector equation (8.39), and the fact
thaty, = 0 for 1<i < N has been set, yield

Giai=yforl<i<N (8.69)

with yp as defined by equation (8.14), and shown in figure (8.1).

The bottom half of the vector equation (8.39) leads to:

—A=Bif'(Gal)(1+a)? for1<i<N (8.70)
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and
A= 2 f/(x) (Go+x) (8.71)

with X := Goary;.

Combining equations (8.69 and 8.70) yields

1 VBi/B for1<i,j<N (8.72)

1+0(’j‘ 1+aF

Through equation (8.72); (1 < i < N) can be expressed in termsaf. This way, the constraint
relation (8.7) becomes an equation with only two unknownsanday. With

N—-1
Bu1i= \ﬂ (8.73)
=1

substituting equation (8.72) into (8.7§({(1+aj)~* = N—1) yields

Bn-1 Go

=N-1 8.74
1+a; ' Go+x - (8.74)

Go+x N-1 N-—-2
= X+ G 8.75
1+a] Bn-1 By © -~ (8.75)

Bn_

o +1= N-1 (8.76)

N—1—(1+a) "

Equations (8.70, and 8.71) can be combined as :
Br /(%) (Go+%)* = G§F' (yo) (L1 +017)° (8.77)

which can be put (using equation (8.75)) as

2
X f'(x) 1
Ci—+D = 8.78
( 1Go 1) (o) Bn (8.78)
with N1 N2
Ci=—~:D;j=—— 8.79
1= g, P1T B (8.79)

Assuming that a meaningful solution to equation (8.78) can be found, denote such sol@jomas
terms ofdy, a complete allocation satisfying FONOC can be identified. By definibga; Goa
which implies thabiy, = 8o/ Gy satisfies FONOC. Fromy, equation (8.76) gives immediatedy],
and fromaj and equation (8.72), ead!f (1 <i < N) is obtained. And since ead® (1 <i < N)
must satisfyGa; = yo (equation (8.69)), once eaati (1 <i < N) is known, so is the corresponding
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G{. The complete allocation is given by:

Gy, = Gg (8.80)
Goon =Y = %o (8.81)
fori1<i<N
1 Bno1
af = — (8.82)
! VBIN—1—(1489/Go)*
Gloai =Y = Yo (8.83)

However, eacls" must satisfyG; > Go or o < yo/Gp. Equation (8.82) indicates that > a; for
alli. Thus, it suffices that
Bn-1

o = —1<v/G 8.84
1 N—l—(1+60/Go)_l _VO/ 0 ( )

8.4.3.2.2 Existence of this solution The preceding allocation depends on a solution to the single-
variable algebraic equation (8.78). Below, the conditions under which this algebraic equation has
solution(s) are examined.

Observe, first, tha€ix/Go+ D1 < x4+ 1. This is so, because the left-hand side of this in-
equality is largest whefsy andBy_1 are smallest (see equations (8.79)). Because of technolog-
ical limitations, Gg > 1 (the highest available data rate cannot exceed the channel’s “chip rate”).
And, By_1 = z’j\':‘llw /Bj > N — 1, since, by construction, % B; < B; for vi. Hence,C; < 1 and
D1 < (N—-2)/(N—1) <1. All this implies thatC;x/Go + D1 < x+1.

For the class of functions being considered, the graph of the funtid(x) is observed to be
“bell-shaped”, as displayed by figure (8.1), and so is the gramimafl)2 f'(x)/f'(Yo). On the basis
of the preceding paragraph, it can be further argued that the fun@iosiGo + D1)? f/(x)/f(Yo)
is also bell-shaped. This implies that@f is “too large”, the “peak” of this function may fall below
1/Bn, unlessPy is also “very large”. Thus, equation (8.78) may have no solution. On the other
hand, wherGy is sufficiently small and/oy is sufficiently large, two values of, on either side of
the peak of the concerned function, sgy< x;, will satisfy equation (8.78). Intuitively, one would
expect that the larger of these two values be the best candidate for a maximizer. However, a larger
SIR for the favorite terminal leads to a smaller throughput for the non-favored terminals. Thus,
with many non-favored terminals and just one favorite, it is possible that the network weighted
throughput be higher when the SIR of the favorite terminal is the lower of the two values satisfying
eg. (8.78). But this may not be yield a global maximum.

On the other hand, the nth row of equation (8.39) yields the multiplier associated with the
constraintGg — Gy <0 as

%of’(30) — (o)
G5/Bn

N = (8.85)
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It is necessary for a maximizer thay < 0. This condition is best interpreted by writing it as

Gj

B :tZ%(f(t)/t) <0

=8

The development in chapter 2 shows that, for the class of functibe@ng considered, the derivative
of f(t)/t is positive fort < yp, is zero atyp, and is negative for > yp(with yp defined by equation
(8.14)). Thus, in order fod, to lead to a maximizer, it is necessary that

3 > Yo (8.86)

Thus, even if ¥y falls below the maximal value of the functidBix/Go + D1)? f'(x)/ f'(Yo), the
resulting intersection points may both be less tig@nwhich would violate a necessary condition
for a maximizer.

8.4.3.3 A Multi-Favorite Boundary Solution (MFBS)

The remainder of this investigation focuses on the special case in @hicl fori =1...Nz, and
Bi = B > 1 otherwise. That is, there are only two possible weights.

The single favorite boundary solution to FONOC discussed in the preceding sectionomnay
exist, and even if it does exist, it manpt lead to a global maximizer. This section investigates a
more general solution to FONOC in which all the important terminils,and several ordinary
terminals, say; < N, operate at maximal data rate.

8.4.3.3.1 General structure of the solution There areN; — n; non-favored terminals. Thus,
p =0 for 1 <i < Nj—n; (see equations (8.40)). Working with the fiNt — nirows of the vector
equation (8.39), we obtain, ford i, ] < Nj;—ny,

vif'(v) = f(v) =0—v =Gaj =yo (8.87)

with yp defined as the unique positive solution to eq. (8.14).

We also establish by working with the bottom half of the vector equation (8.39) that:
A= f(Ga) (14072 for1<i<N;—my (8.88)

and
A = (Goat!) (14 o) for Ny —ng <i < Ng (8.89)

and
A =Bf'(Goaf) (1+0ai)2for N—Np <i <N (8.90)
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Combining equations (8.87) and (8.88), we obtain
o =ajforl<i<N;—m (8.91)

ForN; —ng < i <Ny, eg. (8.89) leads tn; equations of the form

f(Goaf) (L+07)2 = f/(Goat}) (L1+0af)?

Evidently, this equation is satisfied with

O(i*:o(]-‘:y/Gofor Np—np<i,j<Ng (8.92)
A similar analysis of eg. (8.90) leads to

af =aj=%x/GoforN—nx <i, j<N (8.93)

Now, the constraint relation (8.7)X;(1+ ai)~t = N — 1) becomes an equation with only three
unknowns g1, x andy. Substituting egs. (8.91, 8.92 and 8.93) into (8.7) yields

Nz, Mmoo M N (8.94)
1+a; 1+§0 1+§0
Equations (8.88, 8.89, and 8.90) imply that
y 2 X 2
! y _ I N
f'(y) <1+ Go> Bf'(x) <l+ Go> (8.95)
X 2
Bf'(x) <1+G> = f'(yo) (1+0})? (8.96)
0

Equation (8.96) provides a closed-form expressiorofpin terms ofx:

. X Bf'(x)
ol = <1+GO> o (8.97)

The function on the right-hand side of eq. (8.97) takes on values as lewlLaand yields a bell-
shaped graph (such as that shown at the top of fig. 8.3). But, physicalgannot be negative.
Thus, the existence of a MFBS in which all the ordinary terminals are active necessitates that the
SIR of the important terminals be held within certain interval. This range exparfigm@svs, but
shrinks as5q increases. Furthermore; cannot be too large, either. This is so because, in order to
satisfy FONOC, the non-favored terminals must operate with SIR equal hus the spreading

gain for these terminals must equg)/a;. But if a; is large, this ratio may be smaller th&y,

which is the smallest allowable spreading gain. That is, it is necessary that;0< yp/Gp. This

further constrains the values wthat can be chosen.
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Within the appropriate range, eq. (8.97) allows us to write eq. (8.94) as :
Ny n Ni—m

Equations (8.95) and (8.98) form a system of two non-linear equations in two unknowns which is,

N
+ =N-1 8.98
1+ & (8.98)

in principle, solvable. Once the appropriate valuesoandy*are known,aj, the optimal CIR

for terminals 1..N — nq, can be obtained from eq. (8.97), and the matching spreading gain, from
eq. (8.87), agp/a;. Thus, fromx* andy*, a complete multi-favorite solution to FONOC can be
obtained. This solution is discussed below, its possible optimality is addressed.

8.4.3.3.2 Discussion of the MFBS The general structure of this solution to FONOC is very
similar to that of the dual-favorite solution (one important and one ordinary terminal operate at
highest data rate, and the rest operate with B)RThe caption of figure 8.3 summarizes much of
what can be said about the MFBS. Further insights are given in section 8.4.4.2 through numerical
examples.

Generally, there are four intersection points, one in each of the branches of the concerned X-
curve. ltis clear that, among the four intersection points, the NE one yields the largest throughput
for the favorite terminals, since both(the SIR of the important terminals) aydthe SIR of the
favored non-important terminals) are as high as possible. But the non-favored terminals, whose
SIR isyp, by eq. (8.87), must also be considered. The throughput of each non-favored terminal
is obtained ad (yo)/G1 = f(yo)/(Yo/a7) O aj. aj is obtained fronx* through eq. (8.97), which
gives rise to a “bell shaped” graph (see comments immediately following eq. (8.97)).dfhiasd
hence the throughput of the non-favored terminalglgisreasingn x* beyond a certain value af .
Therefore, if the number of non-favored termindlls,— n1, is larger than the number of favorites,

N2 + ny, the NE intersection point mayotlead to the largest overall weighted throughput.

Moreover, whem; = N; so thatall terminals, whether important or not, operate at maximal
data rate, then the U-curve is replaced by a hyperbolic “L-curve”, as displayed in fig. 8.3. To see
this more clearly, observe that whep= Nz, we can solve eq. (8.98) fgrin terms ofx, obtaining:

y Ny

—-— = -1 (8.99)
Go Np+Np—1-— 1+’)\5G0

Forx=0,y=Gp/(N1—1); and asx — o0,y — —Gp(N2 — 1) /(N1 + N> — 1).Thus, when all terminals
operate at maximal data rate Np > 1 (several “heavy-weight” terminals), there is an SIR value
beyond whichy would have to be negative in order to satisfy the constraint on the power ratios, eq.
(8.7). That is, the “L-curve” falls below zero forsufficiently large. Hence, in this casecannot
exceedsy/ (N2 —1). Furthermore, for lowsg, the maximum value of, which isGp/(N; — 1) could

be so low, that the L-curve may intersect only the SW leg of the X-curve, in which cases aoth

y are “low”, and this would lead to minimum not a maximum. The message, in this case, is that
there are too many “favored” terminals (those operating at the highest data rate); some need to be
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(x1,y1), (x2,y2), (x1,y2) and (x2,y1) are possible solutions to Bh(x)=h(y)

Bh(t)

"X-shaped" graphs showing points (x,y) satisfying Bh(x)=h(y)

¥4 Yo %
SIR

NW T
(I

y (SIR)

7 ’ NE

Figure 8.3:

With the SIR of the favored terminals denotedxgémportant) andy (ordinary), FONOC requires
thatBh(x) = h(y) (eq. (8.95)). Any of the pairs,y1), (X2,¥2), (X1,Y2), Or (X2,y1) (top) satisfies this
equation, but may not be feasible. When all such points are plotted, an “X-shaped” graph emerges
(NE, NW, SW and SE are directional labels). On the same axes, the U-shaped graph arising from
the constraint equation (8.98) is also plotted. The 4 intersection points between the U-shaped and
X-shaped graphs for the give®d,B) pair lead to feasible solutions to FONOC, provided that the
resulting CIR and data rate for the non-favored terminals are also feasible. @ghefilarge”, the

“U” lies above the “X” and no intersections exist. In such a cadleterminals are set to operate at

the highest data rate, and the hyperbolic curves (from eq. (8.99)) replace the U cuygss ldw
enough, the hyperbola mayly intersect the SW leg of the X-curve, which leads to a minimum.
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downgraded to “non-favared”. On the other hand, with a large en@ggkhe hyperbola intersects
the “Northern legs” of the X. In this case, a maximum results. Thus, viigis large enough, all
terminals should operate at the highest available data rate.

8.4.4 Finding the Global Maximizer
8.4.4.1 Solution procedure

In discussing the procedure, for expositional convenience we assume that there is only one important
terminal (\, = 1). The key variable is the number of “favored” terminals (those operating at highest
data rate). At least the important terminal must be in this group, mittthe number of favored
ordinary terminals, possibly being as low as zero, and as high ahe total number of ordinary
terminals.

e Setn; = 0 (Single-favorite). Find, if possible, the 2 positive solutions to eq. (8.78)xsagnd
X5. Either value can be a FONOC-solving SIR for the favorite terminal, and each leads to a
complete allocation. For each of these 2 values, through eq. (8.82) obtain a correspgnding
the FONOC-solving CIR for the ordinary terminals, whose matching spreading gaifois
If yo/a > Go, a completdeasiblesolution to FONOC has been found, and the corresponding
weighted throughput can be calculated. Of the 2 solutions to eq. (8.78), the one yielding the
highest network weighted throughput should be chosen. It is possible that no single-favorite
solution to FONOC exists. In any case, sgt= 1 and proceed to find a dual-favorite solution

e For 1< n; < N; (multifavorite solution) proceed as follows. Find the solutions (up to four) to
the system of equations formed by eq. (8.95) and eq. (8.98). This is the equivalent of finding
the four intersections between an X-shaped and a U-shaped graph (fig. 8.3). But not all of
these intersections are useful. If thealue is outside certain range, the FONOC-solving CIR
of the non-favored terminals,, may be negative, or its matching spreading gain may be less
thanGy. Each oneof the useful intersections determine a complete solution to FONOC. The
SIRs of the favored terminals argimportant) andy (ordinary). The FONOC-solving CIR
for the non-favored terminals can be found from eq. (8.97), and the matching spreading gain
iS Yo/a. The corresponding weighted network throughput can then be calculated for each
feasible solution, and the one leading to the greatest network throughput chosen. If the U
curve is “too wide”, meaning thatwould makea negative, proceed to the next item, below.
Otherwise, increment; and repeat this complete item (draw another U curve for themgw
until ng = Nj.

e Forn; = N; (all terminals, important or not, operate at the highest data rate), find the solution
to the system of equations formed by eq. (8.95) and eq. (8.99). This is the equivalent of
finding the intersections between an X-shaped graph and a hyperbola (fig. 8.3). The SIRs
of the important terminal ig and that of the ordinary terminalsys The matching CIRs are
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respectivelyx/Gg andy/Gy. Each intersection leads to a feasible solution to FONOC, from
which the weighted throughput can be calculated. If the only intersection lies in the SW leg
of the X, the all-favored solution is a local minimizer (useless).

e The global maximizer is found among the feasible FONOC-solving allocations already dis-
cussed, and is whichever yields the largest weighted throughput.

8.4.4.2 Numerical examples

Single—Favorite Necessary Condition
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Figure 8.4:

With a moderatésy = 20 andf3 = 1.5, two single-favorite solutions exist, at4.5 and 13 (top).

But the best yields only a throughput of 0.12 the chip rate. Fortunately, the bottom subplot shows
4 dual-favorite ; = 1) solutions at (13.8, 12.8), (13.7, 4.9), (4.7,12.7) and (4.7,5.0) leading to
weightedthroughput of 0.7, 0.65, 0.05 and 0.015 the chip rate, respectively. The “all favored”
solution f; = 9) leads to a minimum.

In the examples shown in figures 8.4, 8.5 and 8.6, the frame-success functiog) is [1 —
(1/2) exp(x/2)]8°, corresponding to non-coherent FSK, no FEC, and packet size of 80 bits. The
“preferred” SIRyy = 10.75 for this FSF. There are 10 terminals, one of which is “important”.
Thetop subplotrefers to the “single-favorite” solution (SFBS), wikithe SIR of the favorite.
The first order optimizing conditions (FONOC) require the SIR of the favorite to be at one of the
intersections between the shown bell-shaped curve and the Ipéety. (8.78)). The hyperbola
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Single-Favorite Necessary Condition
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Figure 8.5:
With a smallGy = 4 and a moderatp = 1.5 the single-favorite solution exists (top), and leads to
the maximum. But all the multi-favorite solutions fail (intersections of U and X curves falls outside
the acceptable range ®f. An “all favored” solution exists (barely visible) but leads to a minimum.
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Single-Favorite Necessary Condition
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With a highGg = 150 andB = 1.5 no single-favorite solution is available. Although the bell curve
does intercept the line/B (top), for anyx, a will be above 0.07, which means its matching spreading
gain will fall below Gg. The same problem plagues multi-favorite solutions (U-X intersections) with
1 < n; <8, all of which fall outside the acceptable range %afshown by the thick green lines).
However, the “all-favored” solutions{ = 9) (intersections of the hyperbola and the X) do exist.
The NE intersection leads to the global maximizer.
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at the top corresponds m, the CIR of the non-favorites, as a functionfeq. (8.82)). Ifa
exceed®max = Yo/Go, its matching spreading gaig/a is less tharGy, the lowest available. The
bottom subplotorresponds to the multi-favorite solutions, in which the important terminahand
ordinary ones operate with the lowest available spreading @airwhile the remainingN; — ng
ordinary terminals operate with an SIRWwE x andy are respectively the SIR of the important and
ordinary terminals operating at the highest data rate (“favored”). The X-graph arises from eq. (8.95),
and the U graph from eq. (8.98). U curves are numbered with the clgsefhe 4 intersection
points between the U and X graphs lead to feasible solutions to FONOC, providedigsinside

the intervals indicated by the thick green line. Outside these intervals, either the resulting, CIR,
for the non-favored terminals, or its matching data rate is unacceptable.

8.5 Discussion

The optimal allocation of power levels and data rates for terminals transmitting to one base station,
in a scenario relevant to 3G CDMA, has been investigated. The objective functionvieitieted

sum of each terminal’s throughput. For much of the development, two weights, which admit various
interpretations, including levels of importance, “utilities”, or monetary prices, are considered (cer-
tain results are given for the general case in which there are as many weights as there are terminals) .
The properties of the physical layer are embodied in the frame success function (FSF), which gives,
in terms of received signal-to-interference ratio (SIR), the probability that a data packet is correctly
received. Buno specific functional form (“equation”) is imposed on the FSF. It is assumedthat

that is knowmabout the FSF is that its graph is “S-shaped”, and the analysis follows from proper-
ties derived from this shape (a few additional technical assumptions to be discussed below are also
made, in order to characterize the solutions to FONOC). Therefore, this analysis applies to many
physical layer configurations of practical interest. Each physical layer has a preferragd, 8#sily
identified in the graph of the FSF.

The special case in which only two terminals, one more “important” than the other, share the
cell has been thoroughly solved, and the the second-order conditions for a maximum have been
verified. The analysis of this special case illustrates clearly the solution procedure, and develops
much intuition. The 2-terminal case is separately discussed in section 8.3.5.

The N-terminal analysis focuses on a specific scenario, in which a few “important” terminals
share a cell with many “ordinary” terminals. It is presumed that the system can accommodate all
the important terminals at the highest available data rate. But it is not clear how many, if any, of the
ordinary terminals should be set to operate at this high data rate, and at which rate should operate
the others, in order to maximize the cell’s weighted throughput. A complete solution procedure
is given, which finds for all terminals the data rates (through the corresponding spreading gains)
and the transmission power levels (through the corresponding carrier-to-interference ratios) that
maximize the cell weighted throughput. Additionally, specific numerical examples are provided
and discussed. In the end, terminals end up divided in two groups: favored, which operate at the
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highest available data rate, and non-favored, which achieve the preferred %lRta$ significant

that this SIR is a respectable value. For example, for a simple, but plausible FSF (equation (8.6)),
f(yo) = 0.83. Thus, even “non-favored” terminals enjoy reasonable frame-error performance. The
set of favored terminals always include all important terminals, and may include some ordinary
ones.

In describing the solutions to FONOC, certain assumptions are made concerning the shapes of
the graphs arising from some functions of the derivative of the FSF. Specifically, in discussing the
two-terminal model, the observation that the graphsféix) andx? f/(x) are “bell curves”, as shown
in figure 8.1, play a fundamental role. In fact, what is needed is that these graphs be strictly quasi-
concave; i.e., these functions must be strictly increasing between zero and the respective positive
value where each has its maximum, and be strictly decreasing beyond that point. For the N-terminal
analysis, the assumptions made on the derived functions are (i) that the fuhdisaoch that:

(ax+b)? f'(x) be strictly quasi-concavex > 0 andva,b € [0,1] (8.100)

and (ii) that the shapes of the graphs displayed in fig. 8.3 are as shown. Specifically, the graphs of
(x/Go+ 1)? f'(x) must be quasi-concave (which is implied by condition (8.100) with1/Go and

b = 1), which leads to th&-shaped graph; and that(x) be single-peaked (which is implied by
condition (8.100) witra = 0 andb = 1), and which leads to tHg-graph.

However, as of this writing, no formal proof is available showing that&ibrS-curves these
graphs are as desired. Technically, this means that the analysis describing the solutions to FONOC
applies to the subset of S-curves for which the concerned graphs have the desired properties. Practi-
cally, this means that before applying this analysis, the engineer should verify that the frame-success
function corresponding to the specific physical-layer of interest is such that the pertinent graphs have
the desired shapes. If they don't, this analysis needs to be adapted. Notice, however, that the analysis
in previous chapters is not affected by these restrictions.

This model is extended in chapter 9 to consider non-negligible noise, as well as the presence of
media-transmitting terminals operating at a fixed data-rate with inflexible SIR requirements. Con-
sidering non-negligible noise is important because the noise term may include out-of-cell inter-
ference, which is often substantial. Future studies may consider the issues of QoS, fairness, and
decentralized implementations, all of which are of practical importance.
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Chapter 9

Maximal Data Throughput in the
Presence of Power Limited Media
Terminals

9.1 Introduction

Modern wireless networks will accommodate simultaneous transceivers operating at very different
bit rates. Some of the transceivers may be transferring data, while others transfer media content,
such as voice, images, or video. Chapter 8 studies throughput maximization in a model relevant
to a single-cell VSG-CDMA system in which eadata terminal can operate within a range of

bit rates, assumed continuous for tractability. This chapter discusses how to extend that model
to consider three additional items: (i) Transmission power limits, (ii) non-negligible out-of-cell
interference, and (iii) the presence of media-transmitting terminals with fixed bit rates and inflexible
SIR requirements.

Power limitations are important for obvious reasons. However, when out-of-cell interference is
negligible (system is “interference limited”), the noise term in the SIR expression may be neglected.
Then, the power allocation question reduces to finding a vector of carrier-to-interference ratios
expressing power ratios between the received power of the terminals. For example, when there are
only two terminals, power allocation reduces to finding the optimal ratio between the received power
of the two terminals. In theory, the specific power levels are arbitrary, as long as the optimal ratio
is maintained. However, when the noise term includes strong out-of-cell interference, the power
limitations of the terminals need to be taken explicitly into account. Additionally, there may be
media-transmitting terminals operating at fixed bit rates and SIR. From the stand point of the data
terminals, these media terminals appear as additional sources of “noise”, which decrease the total
data throughput.

In this chapter, data terminals continue to be delay-tolerant, with power and data rates that can
be assigned at will within specified limits, to maximize the (weighted) throughput. However, the
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media-transmitting terminals operate at fixed data rates, and have inflexible SIR requirements. The
media terminals may belong to various classes, each identified by its data-rate and SIR pair. The
data terminals may also belong to various classes, each identified by how its throughput is weighted
by the network. There are two possible weights, which admit various interpretations, including
levels of importance or priority among tldataterminals, “utility” per bit, or monetary prices. The

data rates of the data terminals, and the power levels of all terminals are allocated to maximize
the sum of the weighted throughputs of eafgta terminals, while respecting the fixed operating
conditions of the media terminals.

At the core of this analysis is a frame-success function (FSF) that gives the probability that a data
packet is received successfully in terms of the terminal’s received signal-to-interference ratio (SIR).
This function depends on many physical attributes of the system, such as the modulation technique,
the forward error detection scheme, the nature of the channel, and properties of the receiver. No
particular algebraic functional form (“equation”) is imposed on the FSF. Rather, it is assumed that
all that is knownabout this function is that its graph is a smooth S-shaped curve, as displayed in
fig. 8.1, and properties derived from this shape form the basis of this analysis. Hence, this analysis
should apply to many physical layer configurations of practical interest. Chapter 3 discusses further
this modeling approach.

Below, a relatively simple optimization model relevant to uplink data and media transmission
in one VSG-CDMA cell is built. This chapter focuses on the special case in which a power-limited
media terminal interacts with two data terminals, one of which is more “important” than the other
(the model built below can handle a somewhat more general situation than that which is analyzed).
The aim is to show that much of the analysis of chapter 8 can still be applied, with relatively
minor modifications, to the more complicated and realistic situation of this chapter. The first-order
necessary optimizing conditions (FONOC) for the dual class situation of interest are presented, and
two possible solutions to FONOC are discussed: one in which only the important data terminal
operates at the highest available data rate, and another solution in which both data terminals operate
at this rate. This analysis makes clear that the development of chapter 8 can be extended to consider
the situation of this chapter with only superficial modifications.

9.2 Problem Formulation

9.2.1 Optimization Model

Np
g?%?(i;BiTi(Giaai) (9.1)
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subject to
< Gy 9.2
= < .
S0 i;1+ai (9.2)
G>Gy {1<i<Np} (9.3)
Gs = Gg (9.4)
Y3
_ s 9.5
a3 G3_ (9.5)
R<Rh {1<i<N} (9.6)

In this simple model,

1. Np = 2 is the number oflata terminals, whileNy = 1 is the number ofmediaterminals.
N =Np+ Ny =3.

2. The throughput oflataterminali is defined af:T(G;, a;), with

f(GiGi)

Ti(Gi,qi) := S

(9.7)

3. G =Rc/R,i€{1,...,N} is the spreading gain of termingli.e., the ratio of the channel’s
chip rate Rc to the terminal’s data transmission r&gbits per second)Gg > 1 is the lowest
available spreading gain (determined by the highest available data rate).

4. a; is the carrier-to-interference ratio (CIR) of the signal from terminaiceived at the base
station.q;j is defined as,

_ Rhi _ Qi
S1aPihj+0® 3L Qj+0?
i i

(9.8)

a; -

with P, the transmission power of terminialh; its path gainhP := Q; its received power,
ando? a representative of the average noise power and, possibly, out-of-cell interference. It
can be shown that, witi? > 0, the CIR’s must be such thata;/(1+a;) < 1 (constraint

(9.2)) to ensure that a set of positive received powers exist that produce thengszetSee
appendix B, and references [32, 1]). However, some of the resulting power levels may be too
high for some terminals. This is discussed below.

5. The produciGia;, denoted as;, is terminali’s signal to interference (SIR) ratio. For media
terminals, a specific SIR value must be provided. For data terminal, the SIR is to be deter-
mined optimally, along with the data rates, to maximize the network’s weighted throughput.
Notice that

ai/(1+a) =1/(1+071) =1/(1+Gi/y) 9.9)
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6. Each terminal has an upper bound on its transmission p&wvéfor conveniencen P, = Qi is
set. For media terminals; = (1+ Cgi/ﬁ)hi is defined as the terminal’s “effective” path gain,
because the analysis shows that the terminal with the lolyBshas the greatest difficulty
in reaching the power level leading to its desired SIR. The greatest limitation to network
performance is imposed by the terminal in the worst situation. Because of the inflexible SIR
requirement of media terminals, it is less favorable for the cell that the terminal in the worst
situation be a media terminal, as opposed to a data terminal, and this is assumed below.

7. Bi > 1is aweight, which admits various practical interpretations. In the special case discussed
in this chapter, EB1 <R =B

8. There is a frame-success function (FSk),which gives the probability of the correct recep-
tion of a data packet in terms of the received SIR. We assumalthihait is knowrabout this
function is thatf (x) := fs(x) — fs(0) has the general properties of the generalized “S-curve”
discussed in chapter 2 (see fig. 8.1), and that it has a continuous second derivative. Because
fs(0) is very small, the difference betwedg and f is generally negligible. Nevertheless,
this correction is made for technical reasons. To provide numerical examples, the FSF cor-
responding, under suitable assumptions, to non-coherent FSK modulation, with no FEC, and
packet size 80, which is given by equation (8.6), is used.

In the development below, an asterisk used as a superscript on a variable denotes a specific value
of the variable which satisfies certain optimality condition. Any data terminal operating at maximal
data rate is referred to as “favored” or “favorite”, and a data terminal in the high-weight class is
termed “important”, as opposed to “ordinary”.

9.2.2 Power Limitations

When constraint (9.2) holds, the resulting received power levels are such that

2

o of

. — 9.10
Q 1-—s51+a; (9.10)
with \ N
aj 1
S = = 9.11
i;1+ai i;l—l—Gi/yi ( )
(See appendix B, and references [32, 1]).
By observing that
qa; 1
=1 9.12
1+q + 1+q ( )
S can be written as
N N
(of 1
= =N- 9.13
% i;Hon & 1+ (5-13)
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But with power limitations, some terminals may not be able to reach the power level given by eq.
(9.10). To avoid this, the feasibility condition given by inequality (9.2) is modified, as in [32], as
follows :

2

() ;

1 . — < ._
v'? QI 1—Soa|+1_hlpl —
. 02 qj
<1-—
Vi, s hiP o;+1
$<1- o’
- miin{(l+1/0(i)hiP.}
w<1- o (9.14)
- (1+ Gn/YN) hnPy '

Inequality 9.14 assumes that termiilis in the “worst situation”. For example, the data terminals
may be such thauiP_, > (1+ GN/VN) hNFTN for 1 <i < Np. This guarantees that regardless of the
optimal choice ofx;, a data terminal will not minimizél+ 1/a;)hP.

9.3 Solving the special case

Below, the special case in which the cell is shared by three terminals: an “ordinary” data terminal,
whose throughput is weighted by one, an “important” data terminal whose wei@ht-i4, and

a media terminal with inflexible data rate and SIR requirements is discussed. Pessimistically, it
is assumed that the media terminal also has the most stringent power limitatiane(fgk, 2},

hPR > (1+ Gg/Ys)hsPs).

9.3.1 Optimization Model Restated

max f(%f(l)JrBf((éz:z) (9.15)
subject to
1-?-1(11+1—(i}-2(12 < 1-g (9.16)
G > Gpie{1,2} (9.17)
G; = Gg3 (9.18)
a3z = Y3/Gs (9.19)

Constraint (9.16) follows from (9.14) with

02 1
e3=(1+ = 9.20
3 ( h3P3> 1+G3/ys (9:-20)




Some reflexion indicates that constraint (9.16) should be satisfied with equality. Otherwise, the
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throughput could be increased by raising eithgmwhile still satisfying constraint (9.16). However,

it is not clear a priori whether either or both of constraints (9.17) should be satisfied with equality.

9.3.2 First-Order Necessary Optimizing Conditions (FONOC)

The Lagrangian corresponding to this problem can be written as

T1(G101) + BT (Gz012)

ai

A (i_ill-i-(xi —1+€3) -i-iiui(Go—Gi)

The FONOC can be expressed in vector form, with: Gja;, as:

0T1(G1,01)/0G1 — g 0
BOT2(G2,02)/0G2— | _ | O
f'(y1) +A(1+0aq)~2 0
Bf'(v2) +A(1+az) 2 0
with
2
Qi
=1- ¢
i;1+°‘i °
M(Go—G1) =
B(Go—G2) = 0
Notice that

oTi(Gi,0i) _ vif'(y) —f(v)
0G; G?

and from eq. (9.13), condition (9.23) can be equivalently stated as

2
1
—1+te
i;4+ai 3

9.3.3 Solving FONOC

9.3.3.1 A single-favorite boundary solution

The development in the preceding chapter suggests the investigation of a solution to FONOC in

_|_

(9.21)

(9.22)

(9.23)

(9.24)
(9.25)

(9.26)

(9.27)

which the important data terminal operates at maximal data@Gate-(Gp), with the data rate of the
ordinary terminal somewhere within its allowable range (ue= 0, which allows anyG; > G per

“complementary slackness” condition (9.24) ).
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From the top row of the matrix equation (9.2)f'(y1) = f(y1) is obtained, which is an equa-
tion of the general form:
xf'(x) = f (x) (9.28)
With f an S-curve, there is a unique positive vajgavhich satisfies equation (9.28), which can be
seen in figure (8.1) at the tangency point between the graphaatl a straight line from the origin.
Therefore,
Gio1 =Yo (9.29)

Combining eq. (9.29) with the bottom half of the matrix equation (9.22) yields

1+G2>2 f'iy2) _ 1
= 9.30
<1+0‘1 f'(vo) B (9:30)
Equation (9.27) can be written as
l+a2—(1+e)a +€ (9.31)
Tro, 3)d2+ €3 :

Combining egs. (9.30) and (9.31) yields, wiim place ofy,, :

2 ¢
((1+£3)(;(0 +83> ff,((;;)) :; (9.32)

In eq. (9.32), all quantities, except ferare presumed known. Thus, this is a single-variable equa-
tion. Notice thatGg > 2; and values ofszgreater than or equal to 1 are useless, becauseifl
condition (9.22) cannot possibly be satisfied; thdst €3)(x/Go) + €3 < x+ 1. This fact is useful

in arguing that (1+€3) (x/Go) +£3)%f/(x)/ f’(yo) has the same “bell-shaped” graph of the function
(x+1)2f/(x) (fig. 8.1). This implies that, iy is “too large”, the “top” of this bell may fall below
1/B, unless3 is also “very large”. Thus, eg. (9.32) may have no solution. On the other hand, when
Go is sufficiently small and/of is sufficiently large, two values of on either side of the peak, will
satisfy eq. (9.32). Let the larger valu®, be chosen as the FONOC-solving SIR for the important
terminal. With this valueq; is directly obtained from eq. (9.27), and by plugging thevalue

into eq. (9.29),G; is obtained. Thus, a complete “single-favorite” solution to FONOC is found.
However, if the resulting(] is negative, or iG] < Gy, this solution is useless, and a “dual-favorite”
solution, with both data terminals operating at the highest available data rate, must be sought.

9.3.3.2 Dual-favorite Boundary Solution

In the preceding section, the SFBS, in which only the important terminal operates at the lowest
available spreading gain (highest data rate), was considered. It was pointed out that the SFBS may
fail to exist depending on the values of the parameBy$. In this section, a “greedy” solution to
FONOC, in which both terminals operate at the highest available data rate, is sought.
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Working with the last two rows of equation (9.22) it is established, withy, andy = y1, that:

y 2 x \ 2
/ o _ / e

f'(y) <1+ Go) Bf'(x) <1+ Go) (9.33)
Eqg. (9.27) can be re-written as

1 1
n =1+¢ 9.34
1+x/Go | 1+y/Go 3 (9-34)

Egs. (9.33 and 9.34) form a system of two non-linear equations in two unknowns. This system can
be solved. Its solution is characterized through fig. 9.1.

(x1,y1), (x2,y2), (x1,y2) and (x2,y1) are possible solutions to h(x)=h(y)

Bh(t)

0 XYy Y %2
SIR

"X-shaped" graphs showing points (x,y) satisfying Bh(x)=h(y)

NW - N
i xy=G§
Bo1 . H|gher G0
= (X,:¥,) »
)
= >1 -
(X11y1) —
xy=G§ o Low G SE
SwW ’ 0
0
0
x (SIR)
Figure 9.1:

With x andy respectively the SIR of the favorite and sub-favorite terminals, FONOC requires that
Bh(x) = h(y), with h(t) = f/(t) (1+t/Go)?. Any of the pairs(xs,y1), (Xz,¥2), (X1,Y2), OF (X2,1)

(top) satisfies this equation, but may not be feasible. We plot all such points, which reveals an “X-
shaped” graph for eadp. NE, NW, SW and SE are directional labels used to identify the “legs”

of the X . On the same axes, we plot the hyperbolic curves (dotted) which represent the constraint
equation (9.34). Whe@y is low, the hyperbola magnlyintersect the SW leg of the X-curve, which

leads to a minimum.
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9.4 Discussion

The optimal power levels and data rates for data terminals that share one base station with media
terminals, which have fixed bit rates and inflexible SIR requirements, have been investigated. This
scenario is relevant to 3G CDMA. The objective is to maximizewlgghtedsum of thedatater-

minal’s throughput, while honoring QoS commitments made to the media terminals. Two weights,
which admit various interpretations, including levels of importance, “utilities”, or monetary prices,
are considered. The properties of the physical layer are embodied in the frame success function
(FSF), which gives, in terms of received signal-to-interference ratio (SIR), the probability that a
data packet is correctly received. No specific functional form (“equation”) is imposed on the FSF.
It is assumed thadll that is knownabout the FSF is that its graph is “S-shaped”, and the analysis
follows from properties derived from this shape (some additional technical assumptions are needed
by certain results, as discussed in section 8.5). Therefore, many physical layer configurations of
practical interest are accommodated. Each physical layer has a preferre@,&sily identified

in the graph of the FSF.

The main conclusion of this chapter is that the analysis in chapter 8, in which no media-
transmitting terminals are considered, and where out-of-cell interference is neglected, can be read-
ily adapted to the more general and interesting situation discussed in this chapter. The effect of
the media terminals, the out-of-cell interference (noise), and the power limitations of the terminals,
combine into a single ternggz, that reduces the right-hand-side of the constraint on the carrier-to-
interference ratios. Thus, the expressjpa;/(1+0a;) = 1 becomes ai/(1+0a;) =1—¢&3. The
objective function, and other constraints remain unchanged. eJieem appears, harmlessly, in
certain intermediate expressions, but does not alter the shapes of the key graphs describing the so-
lutions, or the fundamental conclusions of the analysis in the preceding chapter. The discussion in
section 8.5 applies to the analysis in this chapter. Particularly, the discussed technical limitations
imposed by the assumptions on the shapes of the derived graphs also apply to the development
herein.
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Chapter 10

Conclusions, Limitations and Future
Directions

10.1 Retrospective Overview

This work has presented a tractable analytical framework useful to the analysis of resource man-
agement issues in the context of wireless communications. Several application have been studied,
emphasizing centralized and decentralized resource allocations for data and media communica-
tion. Specific applications include decentralized power control making use of “mechanism design”
to achieve an efficient allocation, power and data rate assignment for maximal “weighted” cell
throughput in a 3G CDMA context, power and coding rate selection for video streaming when
video segments have been scalably encoded, and choosing the “right amount” of tolerable media
distortion when fidelity is expensive. An appendix addresses capacity questions in a 3G CDMA cel-
lular system, when base station receivers decode cooperatively (macrodiversity). While the cellular
third-generation CDMA-based architecture has often been targeted, the fundamental ideas can be
transferred to other communication scenarios.

The proposed framework has three key elements: (i) a tractable abstraction of the human sensory
system, (ii) a tractable abstraction of the physical layer of a wireless communication link, and (iii) a
fundamental technical result. In these 3 elements, a function about which all that is known is that it
is an "S-curve", plays a central role. The fundamental result involves the maximization of the ratio
f(x)/xwith f an S-curve. Without imposing any particular “equation” on the considered functions,
the solution to this maximization problem is shown to always exist, be unique, and be graphically
describable. A tangent line drawn from the origin to the graplh specifies the optimal solution.

The ratiof (x)/x is also shown to be quasi-concave.

Chapters are largely self-contained, reflecting the fact that this report evolved from individual
papers devoted to specific applications. After each chapter, a discussion section is provided, out-
lining and interpreting the main lessons learned, and discussing some of the limitations. Further
comments on results, limitations, and future extensions of a more general nature are made below.
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But before, an apparent digression is incurred, by addressing the problem of optimally allocating
resources among various subprojects within a personal research program. This discussion provides
some insights into the research priorities that led to this document.

10.2 Allocation of effort among research projects

A researcher must optimally allocate a fixed amount of a resource, say time, among a selection of
a “long” list of possible projects, part of a research program. The more time he devotes to a given
paper, the greater its “utility” (“quality”, “impact”, usefulness), but the lesser the time left to pursue
other projects. What is the “right thing to do™? Finding the right answer necessitates two items

. (i) a clear specification of the relation between the utility of a paper and the amount of resource
devoted to it, and (ii) a clear criterion defining the goal of this optimization.

One would expect (hope?) that the utility of a paper is increasing with the time spent on it,
and that there is a maximum level of utility the paper arising from a given project can reach. The
development in chapter 1 suggests that a good hypothesis about the flh@tigiving the quality
of the paper as function of the amount of resource devoted to it is that it is some S-curve. A
single S-curve may apply to all considered papers because they are all part of the same research
program, and this analysis involves a single researcher. As for the optimization criterion, it is
obvious that maximizing the total number of completed papers would lead to a large number of
“useless” papers, whereas maximizing the quality of each individual paper may result in “too few”
papers. A reasonable criterion is then to maximize the “total utility”, which is obtained by adding
up the utility of each completed paper. That is, if the amount of available resouFcaridt units
are devoted to each paper, the total utility T5/t)U (t). Hence, the researcher should allocate to
each paper the amount of resourtéhat maximized) (t)/t (“quality per unit of resource”), which,
as chapter 2 shows, is uniquely determined by a tangent to the Sidudvawn from the origin
(unlesg* > T in which caseT is the maximizer).

The main challenge to apply the preceding analysis in a real situation may be to estimate the
quality/time S-curve. Yet, the analysis provides a valuable and intuitive lesson: the projects have an
optimal “stopping time”, which defines an “efficient” level of “quality”. For a researcher, to spend
more “effort” on a given project to increase its “quality” beyond this level is inefficient, in the sense
that it reduces the total “impact” of the researcher’s efforts. And this intuitive lesson, to a great
extent, has guided resource allocation to the various problems analyzed in this work. Thus, none
of the chapters are “finished”, if this term is taken to mean that no interesting issues of technical or
practical importance are left to be explored.

10.3 “Unfinished” business

At the end of each chapter there are comments on the main results, and on limitations and desirable
extensions. Below there are additional comments on some high-priority items which, if successfully
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pursued in the future, would enhance this research program.

The key technical analysis involving the maximization of the rdtjg)/x with f an S-curve
is, to the best of the author’s knowledge, rigorous and finished. However, in several parts of this
document, it becomes useful to maximize a ratio of the fb(r)/x whereh(x) = f(@(x)); that is,
h is a composite function of an S-curve, and some other monotonic fungtibmchapter 1, in the
development leading to the quality-rate relatigris a convex curve. In determining the optimal
SIR for video streaming (chapters 1 andgbarises as another S-curve. In fact, it is desirable to
extend thef (x) /x result to consider the somewhat more general problem of maximfZxigg(x).
This ratio can be written as(t) /t, with t = g(x), h(t) = f(@(t)) andg(t) = g~1(t). In these cases,
wheng is a “well-behaved” monotonic function, it is reasonable and intuitive to expect that the
composite functionf(¢(-)) retain the S-shape, and numerical experimentation has confirmed it.
However, this work does not provide a formal proof of this fact. That is, this work does not prove
that the composite function “starts out” convex, and smoothly transitions to convex as it approaches
a horizontal asymptote. Formally proving this fact, or specifying the general conditions under which
it is true, should be high in an agenda of future research.

Chapter 4 applies a “mechanism” available in the economics literature to achieve an efficient
decentralized power allocation among data terminals sharing a CDMA cell. Reference [43], the
original economics paper, shows the efficiency of the allocation of this mechanism in a fairly gen-
eral scenario, and outlines a simple algorithm that leads the terminals to the efficient allocation
even when they are not fully informed about the “situation” of each other. Chapter 4 partially char-
acterizes the allocation arising when this mechanism is applied to two terminals in the presence of
successive-interference cancellation (SIC), a situation under which one terminal creates interference
for the other, buhotvice-versa. More analytical and numerical work is needed to fully characterize
this situation. Additionally, the more common situation in which terminals interfere with each other
needs to be explored further.

The video streaming analysis discussed in chapters 1 and 6 assumes, for simplicity, that the
channel is “quasi-deterministic”, in the sense that the average throughput is treated as a deterministic
guantity. This simplification leads to a clear and intuitive result, involving the composite function
of two S-curves, one determined by the physical layer, and the other by the human-visual system.
A more rigorous analysis which takes explicitly into account the stochastic nature of the channel is
desirable. All the media models in chapters 5, 6 and 7 are point-to-point. Extension to a multi-user
scenario can be obtained, for example, by utilizing the game theory framework discussed in chapter
4. The key difference lies in the indices to be maximized by the terminals: bits per Joule in chapter
4, versus quality per Joule in 6.

The throughput maximization analysis of chapters 8, and 9 has a number of technical limita-
tions most of which are discussed at the end of chapter 8. Some of the most interesting extensions
are mentioned at the end of chapter 8, and include quality-of-service constraints for the data termi-
nals, “fairness” issues, considering many cells, and decentralized implementations. Additionally, in
these chapters the weighf®§) are taken as given. Several optimization problems involving these
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coefficients could be set up. If they are interpreted as prices per bit set by the cell administrator,
determining these prices is of interest. And if they are interpreted as weights reflecting “priorities”
or “importance”, since it is advantageous to have a lghn obvious question is how to assign
them and why. For instancfs may be auctioned or otherwise sold. An additional issue is that of
the availability of the orthogonal variable-spreading-factor (OVSF) codes employed to implement
VSG-CDMA, the technology targeted by the analysis. These codes are limited, and they follow a
tree structure such that a long code has a “parent” code of a shorter length. When a code is assigned,
none of its “children” can be employed. Recent works in the literature focused on managing these
codes include [23, 38]. Chapters 8 and 9 implicitly assume that the desired codes are always avail-
able. Introducing the code-availability constraint is of practical interest, although it is a difficult
problem to approach analytically, and may lead to combinatorial difficulties.

10.4 Main contributions

The main accomplishments of this work are best determined by others. Nevertheless, it may be
appropriate to outline, from an advocative point of view, some of the ideas in this document that
should receive priority consideration by anyone seeking its main contributions.

A key analytical tool in this work has been the S-curve. As discussed in chapters 1 and 2,
this model has proved to be very useful in many fields, including ecology, biology, engineering,
and economics. It appears that all prior studies involving this family of curves rely on specific
algebraic formulas, usually associated with certain differential equations. The present work shows
that such specific formulas are neither necessary nor helpful. For instance, modeling the frame-
success function associated with a wireless communication link as a “formula-free” S-curve (an
“abstraction” of the physical layer) yields an analysis that applies to most physical layers of interest.

The S-curve can additionally serve as an abstraction of the human visual system, by capturing
the relation between the perceptual quality of a media signal and some objective parameter, such
as coding rate or distortion. This approach leads to a “quality-distortion theory”, as introduced in
chapters 1 and 7. In chapters 1 and 6, the physical and the “human” S-curves “merge” into a com-
posite function, which determines the optimal transmission power (and indirectly the coding rate)
of a video streaming system. The S-curve representing the user’s perception of quality is unchange-
able, from an engineering point of view. But the channel S-curve could be altered via manipulation
of communication items such as the modulation scheme. This raises the provocative thought that
by “matching” the channel S-curve to the one representing the human element, a communication
system tailored to the specific end user would emerge.

Thus, some of the key ideas in this document concern modeling. Modeling is in general a chal-
lenging endeavor. Typically the analyst faces a trade-off between the richness or degree of generality
of the model and its tractability. If complexity is of no concern, it is usually straightforward to build
a very general model of a complicated phenomenon, at the expense of tractability. Conversely, a
very tractable model of such a phenomenon can usually be obtained via a long list of simplify-
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ing assumptions, if one is not concerned about the generality of the predictions obtained through
that model. It is considerably more challenging to build a general model with some constraint on
tractability, or to build a tractable model with some constraint on the generality of what can be
learned through the model. It is nearly impossible to build a model of a complicated phenomenon
that both makes the analysis more tractable than that of previous models, while simultaneously gen-
eralizing the applicability of what can be learned with the new model. Yet, a reasonable argument
can be made that the models introduced in this work on the basis of the “formula-free” S-curve,
both generalize and simplify the corresponding analysis.

For instance, the frame-success function (FSF), which gives the probability that a data packet is
received successfully as a function of the terminal’s signal-to-interference ratio (SIR) at the receiver,
is determined by many attributes of the physical layer, including modulation, FEC scheme, the
nature of the channel, and antenna diversity, if any. An exact expression for this function for a
realistic model of a wireless communication situation may be prohibitively difficult or impossible
to obtain, and even if available, it may be intractable or very inconvenient, and highly dependent
on the chosen physical layer configuration. Abstracting this function as an unspecified S-curve
clearly makes the analysis much more general, since it considers a large family of physical layer
configurations, with the only significant restriction that they give rise to an S-shaped FSF (or to an
FSF that is sufficiently close to an S-curve). Since, over a limited domain, nearly all increasing
concave curves, convex curves, step functions, and ramps can be closely approximated by an S-
curve, assuming that the FSF is an S-curve is a very mild assumption. What is really surprising,
and what makes these ideas truly useful, is that this level of generality seems to conzerwith
complexity cost. On the contrary, by focusing on the shape of the FSF, one is able to present clear
and specific results which, in some non-trivial situations, can be easily described by the simple
artifice of drawing a tangent to the S-curve from the origin (the “knee” of the S-curve).

The technique used to characterize the solutions to certain systems of equations should also be
considered. The idea of characterizing these solutions by focusing on the general shapes of the
functions involved may not be new, but it is certainly not common in this field. A good example of
this is found in chapter 8, in the caption of figure 8.3.

Figure 8.3, repeated for convenience as figure 10.1 in this chapter, corresponds to a situation
in which an “important” data terminal share a 3G CDMA cell with several “ordinary” terminals.
The important terminal and (possibly) several ordinary terminals are termed “favored” because they
operate at the highest available data rate. Any terminal not operating at this data rate, operate at a
specific SIR value found at the “knee” of the S-shaped graph of the frame-success function (where
a line that goes through the origin meets the S-curve). In figure £@slthe SIR of the important
terminal andy the SIR of the favored ordinary terminals. In order to know the valuesasfdy
that satisfy the first-order optimizing necessary conditions (FONOC), a system of two non-linear
equations needs to be solved: egs. (8.95) and (8.98).

One could have stopped the analysis at that point, and proceeded with numerical experimen-
tation. However, this work proceeds as follows: First, it observes that eq. (8.95) is of the form
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Bh(x) = h(y) (B > 1is the “weight” of the throughput of the important terminal). It further observes
that the graph offi() is a “bell curve” as displayed at the top of fig. 10.1. Then, it recognizes that for
any pair(xz,y») satisfying this equation, in which bott andys are to the right of the peak of the
bell, there is another pajKk;, y:) also satisfying this equation, such that brifandy; are to the left

of the peak. Some reflection indicates that the “mixed” p@tisy.) and (x,y1) also satisfy this
equation. Thus, for a givep, the graph of all the points that satisfy equation eq. (8.95) must have
four regions. In one region, both coordinates of an order pair are “large” (ftikg>)), in another
region both coordinates are “small” (liK&;,y1)), and then there are the two regions corresponding
to the “mixed” pairs, in which one coordinate is “large” and the other is “small”. What has been
described is essentially an X-shaped graph, as displayed at the bottom of fig. 10.1 (in3dessng
the effect of “pulling apart” the X, as shown).

A similar analysis leads to the conclusion that the graph corresponding to eq. (8.98) is a U-curve
(except when all terminals operate at the highest data rate) as shown fig. 10.1. Generally, there will
be four intersections between the U and the X, except that under certain choice of parameters the U
may lie above the X and no solutions exist. With all terminals at the highest available data rate the
U “deforms” into an “L" (a hyperbola) and, under certain choice of parameters, may only intersect
the SW leg of the X, in which botk andy are “small”, which would lead to a (local) minimizer, as
opposed to a maximizer.

Through this geometric exercise, a great deal is learned about the optimizing SIR values (which
will generally be in the NE “arm” of the X). Because this analysis only relies on the general shapes
of the function involved (X, U, L, “bell”, etc), which are derived from the original S-curve, one can
be confident that what has been learned will remain valid for most reasonable choices of parameter,
as long as the physical layer is such that its frame-success function is an S-curve, a very mild
restriction.

While a great deal of effort has been invested in achieving the technical correctness of this
document, it would be adventurous to issue any guaranty in this regard. In fact, given the the high
technical content of this work, and its depth, breadth, and length, it would be rather surprising if no
significant errors are ever found. Yet, there are some basic ideas and techniques in this document
that appear to be fundamentally sound, and more importantly, fundamentally useful, regardless of
the technical correctness of any specific mathematical expression. While CDMA, the technology of
third-generation wireless communication system is often targeted throughout this work, the basic
abstractions and techniques presented here are largely technology-neutral. Thus, it is conceivable
that aspects of this work will remain useful beyond the lifetimes of the targeted technology, and of
those involved in its writing.
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(x1,y1), (x2,y2), (x1,y2) and (x2,y1) are possible solutions to ph(x)=h(y)
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Figure 10.1: Characterizing the solution to a system of non-linear equations through the shapes of
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Appendix A

Some Basic Results on Concavity

Much of this as well as other relevant material can be found in reference [2], in particular in chapter
lll. The presentation here follows that in the mathematical appendix of reference [21]. However,
the material of subsection (A.2.2) is not found in those references, and is developed in full here.

A.1 Concave and convex functions

Consider a functiorf : | — R, defined on an intervadlc 0.
Definition The functionf is said to be concave if/x;,x2 € | anda € (0,1),

flaoxg+ (1—a)x) >af(xy)+ (1—a)f(x) (A1)

The functionf is said to bestrictly concave if the above inequality holds strictly whenexge# x,.
Definition The functionf is said to be (strictlyfonvexf the function—f is (strictly) concave.

A.2 Properties of continuously differentiable concave and convex func-
tions
A.2.1 Tangentline Theorem

The continuously differentiable functioh: | — R, defined on an intervalC O , is concave if and
only if, Vx1,%2 € 1,
f(x2) < f(x1)+ '(x1) - (X2 —xa) (A.2)

This function isstrictly concave if and only if the above inequality holds strictlix; # x2) € 1.
The functionf is convex if and only if¥x1,x €1,

Fx) > f(x0) + F'(x0) - (x2 —%0) (A3)

This function isstrictly convex if and only if the above inequality holds stricdlyx; # x2) € I.
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A.2.2 The Monotonicity of y-intercepts

Figure A.1: Increasing Y intercepts

Corollary: Let f : | — Rdenote a continuously differentiabdencavefunction, defined on an
intervall C 0. LetXxg, X1, Xo be elements df such thatg < X; < . Then,

f(x2) + (%0 —x2) f'(x2) > f(x1) + (%0 —x1) f'(x1) (A.4)

If f is strictly concave the above inequality holds strictly.
Proof:
See figure (A.1). In this development {1,2}.

First notice thaty (x) = f(x) + f'(x)(x—X;) denotes the equation of a line tangent at the point
(%i,¥i) (vi = (%)) to the the curve describing the graphfof

Letbi = f(x)+ (Xo— ) f'(x).

Thus,b; is the “height” of tangent lind; at the abscissa, or its “intercept” with a vertical line
drawn atxy. Hence, inequality (A.4) can be restatedoas> by. In the special case) = 0, by
become the “y-intercept” or ordinate at the origin of the line
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Let A]_ = gZ(Xl) VY1 andAg = gl(X2> —Yo.
GeometricallyA; is the length of the segme@; R, which equals the difference between the
“height” of the tangent., and the value of the functiof, both measured at the abscissal, has
an analogous interpretation.
Observe that the pointo, b1), Q1 andR; are all in the line.;.

Likewise, (xo,b2), Ry andQ; are all in the line_.

Therefore:
yi—bi _ ya+82-ly N
X1—Xo X2 —Xo
by — X2 X0)y1— (X1 —X0) (Y2 + £2) (A5)
Xo — X1
Ya—b2 _yi+8:1-bp N
X2 —Xo X1—Xo
by — 2 X0) Y1+ A1) — (X1~ X0)y2 (A6)
Xo — X1
Consequently:
by by — (X2 —X0)A1 + (X1 — X0) A2 (A7)

Xo — X1
By constructionxy < X1 < Xo.
By inequality (A.2), bothA; andA; are non-negative, and both are positivé i strictly concave.
Therefore, the right hand side of equation (A.7) is non-negative, and it is positifas itrictly
concave.
Thatis, if f is concaveb, > by, andb, > byif f is strictly concave.

Q.E.D.

Given the fact that-f is concave whenevdris convex (see section(A.1)), the following result is
immediate:

Corollary: Letf : | — Rdenote a continuously differentialbdenvexfunction, defined on an
intervall C 0. LetXxg, X1, X2 be elements df such thatg < X; < Xo. Then,

f(x2) + (X0 —X2) f'(%2) < f(x1) + (Xo—X1) f'(x1) (A.8)

If fis strictly convex the above inequality holds strictly.
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Appendix B

Power, Ratios, and Capacity

B.1 From power ratios to power levels : closed-form solution

In certain situations of interest concerning wireless communication networks, rather than dealing
with power levels directly, one may wish to choose directly the quantities representing the ratios of
each transceiver’s power level to the sum of the other transceivers’ power levels (plus noise power if
applicable). Here we discuss which constraints, besides non-negativity, need to be applied to these
power ratios to ensure that they correspond to feasible power levels, and provide a closed-form
relation giving the power vector in terms of the ratios.

Specifically, leta; be defined as :

_ Rh _ Qi
S Phj+02 3N, Qj+0?
I I#

(B.1)

ai

In this expressionR, is associated with the transmit power of transceiyéy corresponds to the
path gain from transceiverto the base station, amf represents the noise power in the base
station receiverQ; = Rh; is then the received power at the base station in the signal transmitted by
transceiver. N represents the number of active users.

Eacha; can be called a transceiver’s carrier to interference ratio (CIR). The corresponding signal
to interference and noise ratio, SINR is defined as the pro@imt with G; the corresponding
“processing gain” or ratio of the channel’s “chip rate” to the transceiver’s transmission rate.

Notice that implicit in the above formulation is the assumption that a single base station is of
interest. Considering multiple base stations complicates the notation, without casting any new light
on the problem. Hence, a single base station is considered.

The defining equations for thg’s (see equation (B.1) above) yield a linear system of equations
(see eq. (B.2) below). Thej’s correspond to feasible power ratios, whenever this system can be
solved for physically meaningf@;’s.

One could attack this issue via elementary algebra. However, a matrix algebra approach, cen-
tered on the concepts of eigenvalues and eigenvector, is preferred, because it provides more valuable
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insights into the structure of the problem. This is not surprising. Eigenvalues and eigenvectors have
played a prominent role in the development of power control theory. For instance, see reference [7],
which is an influential work.

B.1.1 Problem formulation

The defining equations for the’s (see equation (B.1) above) yield a system of equations which
can be expressed in matrix form as:

1 —o1 —og -0y Q1 of]

—0Q> 1 —0> —0> Q2 a2
. = | (B.2)

—ony —ay —ay -1 On aN

However, it will prove convenient to divide both sides of each one of the original equations by 1
where the index “j” corresponds to the oagwhich appears in the corresponding equation. Thus,
for example, the equation corresponding to the second row becomes:

az a2 a2 a2 -
_ _ e = o B.3
1+0(2QlJr 1+0(2Q2 1+a2Q3 1+a2QN 1+a, (B.3)
Now, for notational convenience, we define:
Ak
= B.4
A= o (B.4)

It will prove useful to observe the following trivial algebraic identity:

+ 1 _ + ! =1 = ! =
1+ay 1+ax 140k 1+ay

ax 1-—a (B.5)

Taking into account (B.4) and (B.5), equation (B.3) can be re-written as

—aQ1+ (1—-a2)Q2— Q3 — - -- — aQn = a0?

After treating all the equations in the system of interest analogously, we can express the system of
equations (B.2) as:

1 00 .--- 0 a a a4 - Ql a1
010 -0 Q a a - A Q> a

-1 . . Cl=] . | ®8)
0 0O0--1 aN an an - an Qn an

Notice that this matrix equation can be expressed as
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(I—A)Q = ac?

Above, | is theN x N identity matrix, andA is a strictly positive matrix with each of its columns
equal to the vectod.

B.1.2 Feasibility Condition

According to non-negative matrix theory, the above system has a non-negative solution whenever
the Perron eigenvalue &f is less than 1. See [34, Section 2.1]. Hence, we need to find the largest
eigenvalue oA.

By definition, A,V are an eigenvalue/eigenvector pair for magii v - 0 and they satisfy:

AV = \V (B.7)

But because of the special structure?oit can be easily verified that, for any vecir

AR = (%xj)a (B.8)

=

Comparing eqgs. (B.7) and (B.8), it becomes apparent that in order for the scalar/ vecioipair
satisfy eq. (B.7), it must be that= z’j\‘:lxj and, either of the following two conditions hold:

i) If Z’j\l:lXj # 0, X must be a multiple ofi (so that eq. (B.8) is satisfied).
i) Xis a non-zero vector such thgf‘zlxj = 0 (which would also satisfy eq. (B.8)).

Notice that, in general, iRN, one can findN — 1 linearly independent vectors such t@';lxj =
0

This development completely specifies the eigenvalues and characterizes the eigenvéctors of

There are only two distinct eigenvalued; = s= z'j\‘zlaj andA, = 0, the latter of which has
multiplicity N — 1. By definition,sis the Perron eigenvalue #f.

The eigenvector correspondingggan be taken to be precisedy

In conclusion, the set of values denotedoﬁs correspond to feasible power ratios whenever
yi,a <1

B.1.3 Explicit Solution

One can reach the above conclusion without invoking non-negative matrix theory, by solving ex-
plicitly the system of equations of interegt:— A) Q = do2. This can be done with the information
obtained through the preceding development. One has to consider separately two cafesnd
o=0.
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The caseo >0

As discussed above, the right-hand side of the above equation is an eigenvector for the matrix
A corresponding to the eigenvalge= zﬂ-\':laj. This suggests that the relationship between the
eigenvalues/eigenvectors pairsfotind those of the matrix— A be investigated.

In fact, if Vis and eigenvector fok corresponding to the eigenvaldgthen

(I—AW=V—AV=(1-A\)V

Thus, 1- A and the sam@ are also an eigenvalue/eigenvector pairlferA !
In particular,d is also an eigenvector for— A with eigenvalue %-s, that is,

(I-A)d=(1-9)a

From this it follows that, ifs 1, @ = (62/(1—s))a (which is positive wheneveg is, ands < 1) is
the solution of(l — A) Q = d02. That is, each component of the power vector must satisfy
g2

rsak (B.9)

with s= Z’j\l:laj. This expression is well-defined and physically meaningful whenevet.

The caseoc =0

If noise is negligible, which implies = 0, then in order for the systeifh —A)Q — 0 to have a
non-trivial solution, the determinant of the mattix- A must be zero. This can only happen if
1-—s, which is the only eigenvalue d¢f— A which is different from one (see preceding discussion
about the relationship between the eigenvalueé ahd those ol — A), equals zero; that is, if
s=yNja=1.

In this case the system has infinitely many solutions. It can be verified that any power@ector
proportional tcd is a solution to(l —A)Q = 0.

In fact, this has already been establisheaihdd have been shown to be and eigenvalue/eigenvector
pair for A. That is,Ad = sd. Therefore, whes=1, (I —A)d=4d—-a= 0, which confirms that
Q= ais indeed a solution off —A)Q =0, as is anyQ [ &.

B.2 Interpretations and Conclusion

Above, the conditions under which each one of a set of positive numbers corresponds to a transceiver’s
carrier to interference ratio, CIR, have been given. These conditions have been derived by studying
the solution of a system of linear equations engendered by the CIR definition (see eq. (B.1)). In fact,

a closed-form expression yielding the solution has been given (see eq. (B.9)). The interpretation of
these results casts some light on the structure of power control problems, and has some implications
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for the modeling of these problems.

Much of the preceding development is centered on some new variables. These variables may, at
first glance, seem devoid of physical significance. However, a more deliberate look at them reveals
that they, and the conditions given in terms of them, can be interpreted in physically significant
manner.

Recall that thex’s were introduced in eq. (B.4) as

Ok
B 1+ ag

where theny's were defined in eq. (B.1) as the received CIR'’s of certain signals. This means that if
the originalay’s are indeed physically meaningful, thgs can be expressed in terms of the received
power vector as follows:

Ok Qx/lk Q« Qx

T Trae 1+Q/ ket Q Qo (8.10)

Above, Iy is the total interfering power, including noise, experienced by kisee, Iy = z’}‘zl Qj+

j#k
02, andQc is the total received power, including noise. Thus, aks represent the respective
signal’s fractional “share” of the total power being received (including noise), or the signal-to-

channel ratio, SCR, a physically meaningful quantity.

In fact, ax can be viewed as a rough “measure” of the channel’s “quality” as experienced by user
k. If ax = 1, userk’s signal power is the only one being received (nor even noise interferes with this
signal). This represent an ideal situation, in which any non-negligible amount of power received in
this signal will result in error-free transmission. At the other extreages 0 indicates the worst
possible situation from the perspective of uker

Along these lines, the sus= z’j\‘zl a; is seen to satisfy

N N Q YiLiQi  3LQ
-ba-p-t0. o o1

Now, the conditions < 1 is discovered to make plenty of sense. If the origimgs are indeed
physically meaningful, as long @& > 0, the numerator in the preceding expression, eq. (B.11), is
definitively less than the denominator, for whiemust indeed be less than 1. Andbf =0,s=1
must hold.

From eq. (B.11), it follows that + s, an expression appearing in eq. (B.9), which gives the
power vector in terms of the ratios, represents the noise’s fractional “share” of the total received
power,a?/Qc. This shows that when the feasibility conditions are satisfied, eq. (B.9) is an identity.

That is:
02 02 [}

1-s™% 7 (02/Qc) Qc

Finally, this analysis has some implications for the modeling of the phenomenon of interest. A

= Q«
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critical step in building a mathematical model is to choose an appropriate set of variables. It is well
known that some variables help to uncover the underlying structure of the phenomenon of interest
and facilitate its analysis, while a different variable choice may hide important interrelations, and
complicate the analysis. For example, in the analysis of linear systems, it is often possible to “di-
agonalize” a matrix representing a linear transformation through a change of coordinates involving
the matrix eigenvectors. This new representation can be quite useful in simplifying the analysis.

The development in this note hints that the signal-to-channel ratio (SCR), defined as the ratio of
a received signal power to the total received power in the channel (including noise), a quantity with
perfectly clear physical significance, may be the “natural” ratio in the analysis of power-control
and related phenomena, as opposed to the SINR, which is the ratio “traditionally” favored in the
literature.

Both the CIR and the SCR hold the same “information”, and the conversion of one to the other is
straightforward. However, a candidate SCR vector can be tested for feasibility simply by checking
whether the sum of its components is less than 1 (or, if noise is negligible, whether this sum equals
one). Likewise, the power vector yielding a desired, feasible SCR vector is directly proportional to
the SCR vector, with the constant of proportionality being a simple, physically meaningful function
of the sum of the desired SCR’s. And if noise is negligible, then the power vector can be taken to
be exactly the same as the SCR vector. Hence, the SCR can be a considerably more convenient
variable choice than the CIR.

Of course, there is a reason why the CIR has been favored. In the relatively simple AWGN
channel, the bit error probability can be shown to be dependent on the signal-to-noise ratio. But
the typical wireless channel is considerably more complicated than an AWGN channel. Model-
ing its bit error probability as determined by the SINR'’s is a high-level approximation. A similar
approximation in terms of the SCR’s could be equally justified (or unjustified).
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Appendix C

Allocating Limited Power with Elastic
Signal-to-Interference Targets

C.1 Introduction

The signal-to-interference ratio (SIR) is a fundamental quality-of-service (QoS) index in the oper-
ation of CDMA networks. In many situations, a terminal enters the network intending to perform
certain task. This task may require that the frame-error rate be kept under specified limits, and these
limits ultimately translates into minimum SIR requirement. Likewise, a terminal may be able to
operate at various levels of SIR, but there may be a level which is optimal for the terminal (e.g,
this level may maximize the terminal’s “utility”). Thus, when a terminal expresses an interest in
joining the network, a question that immediately arises is whether the network, under acting condi-
tions, can support the SIR desired/required by the new terminal, without failing to honor previous
commitments made to other active terminals. Answering this question is an important resource
management issue: admission. This situation is particularly interesting in the context of variable
spreading gain (VSG) CDMA, a technique part of 3G standards, in which terminals with dissimilar
data rates, share a common “chip rate”, but operate with non-identical spreading gains.

The SIR is determined by the power levels of all active terminals, plus random noise, which may
actually represent out-of-cell interference. This problem ultimately comes down to determining
whether a vector of SIR’s is such that there is a “matching” vector of power levels, each meeting
appropriate constraints, which produces the desired/required SIR for each terminal. The answer to
this question is known, even in the VSG-CDMA context. Each desired f|Ran be supported,
if they are such thay; 1/Gi <1,WithG =1+G /Yi, andG; the respective spreading gain [1, 32].
However, in this case there is also a specific power |€y&lith which the signal of terminalmust
be received. With limited transmission power, a poorly situated terminal may be unable to reach its
respectivel); even while operating at maximal power.

If SIR targets are inflexible, when one or more terminals cannot reach the power level necessary
for them to achieve their required SIR, at least one terminal must be refused service or turned off.
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The problem, however, becomes more interesting if there are “flexible” terminals, each willing and
able to operate below its desired SIR. For example, for a given physical layer, there is an SIR value
that maximizes the bits per Joule performance of a data transmitting terminal. But the terminal
can also operate at a lower SIR, at the expense of energy efficiency. Likewise, media transmitting
terminals could operate at a lower than desired SIR, at the expense of higher media distortion,
due to a higher FER. In cases like these, the procedure to be followed to allocate power when
some terminals cannot reach the appropriate power level needs to be clarified. This is done in the
remainder of this note.

The literature on power control and capacity of CDMA networks is plentiful. Reference [1] is
a recent work which discusses many previous publications on this issue, and [10] is an authorita-
tive recent survey. However, to our knowledge, previous works do not address our problem, namely,
what to do when terminals cannot reach their desired SIRs but some terminals requirements are flex-
ible. For example, [32] considers maximal received power constraints by imposing conditions on
the SIR such that the matching powers are all less than the respective maximal received power. But
these conditions can substantially reduce the capacity of the network, when a terminal is severely
power limited (for example, because it is in a very bad location), and it is certainly unnecessary if
this terminal’s SIR requirement is flexible. On the other hand, [30] does touch on our problem, in
the context of a power control “game” among data-transmitting terminals. It is that analysis which
we clarify and extend in this work.

C.2 Problem Statement

N terminals wish to share a CDMA cell. Out-of-cell interference is included as part of the noise
term o2. It is immaterial whether or not some of these terminals are not yet active and want to
join those already active. Terminiails characterized by a path loss coefficignto the base station
(BS), an upper bound on its transmission pover,a data transmission raie (which determines a
spreading gai®s; = R;/R;, with R the channel’s “chip rate”), and its preferences on the SIR space.
These preferences are such that it wants the largest feasible SIR in the iftepjalNotice that,
when energy is limited, a higher SIR is only better up to a point, even in a single-user channel.
For instance, given a physical layer, a quasi-concave (“bell shaped”) function of the SIR gives the
number of bits that a data transmitting terminal can successfully transfer per unit of energy. This
means that there is a specific SIR which maximizes bits per Joule. If a terminal operates with SIR
that islower or higherthan the optimal value, its bits per Joule efficiency suffers [30].

For convenience, we S&P = Ci Vi/Gi = aj, and 14+ Gj/y; = Gi. We callq; the carrier
to interference ratio (CIR) (the SIR is the product of the CIR by the respective spreading gain),
andG; the “effective spreading gain” (unity plus spreading gain per unit of desired SIR). Clearly,
o =1/(G —1).

We defineﬁi = éi h; as the terminal’s “effective” path gain, because the analysis shows that the
terminal with the loweshiP has the greatest difficulty to reach the power level leading to its desired
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SIR. For expositional convenience, we assume fth > hoP, > --- > hyPy. Thus, terminal 1 is
in the “best situation”, and termin&l in the “worst situation”.

We seek a non-negative vector specifying a received power level for each terminal. This vector
must be “optimal” in some reasonable sense. We assume that each terminal values energy, and does
not want to spend more energy than it needs to in order to maximize its preferences on the SIR
space.

C.3 Solution

C.3.1 When all terminals are power sufficient

Evidently, if there is one feasible power allocation such that, for eatie SIR of terminal is
its preferred valuey;, then we would choose such allocation. Thus, our first task is to investigate
conditions under which such allocation is feasible. That is, With= h;P, denoting thereceived
power from terminal, we ask under which conditions a system\béquations of the form:
Qi o1
Niz — (X| = =
21 Qj+o G-1
J#i
has a non-negative solution, and if so what is it in closed form?

(C.1)

The answer is found in [32], and under slightly more general conditions in [1], and the complete
development can be found in appendix B. Equation (C.1) leads to a system of equations:

1 —ap - -0 Q1 of]
-a 1 - -0 Q. ar
= |0 (C.2)
—ay —on -1 Qn ON
One can show that if the condition
N N
Ok 1
S = =) =<1 (C.3)
kzl 1+ak kZl G

is satisfied, the system (C.2) has a unigue solution, in which each component of the received power
vector is given by:

o2 oy o? 1

T 1l-sltan 1—59 Gy

Qk (C.4)

Evidently, if Vi G; = G, then condition (C.3) and equation (C.4) reduce to, respectively, :

<1 (C.5)
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Q=g (C.6)

C.3.2 Some terminals lack sufficient power
C.3.2.1 General strategy

If condition (C.3) is satisfied, and each terminal can reach (at the receiver) the power level given by
equation (C.4), then each can achieve its desired SIR by setting its transmit power @yéhat

But, evidently, one or more terminals may not be able to reach such level, because of power limita-
tions. Our analysis will show that the terminal with the lowla§ (with hy = Gih;) has the greatest
difficulty in reaching the power level leading to its desired SIR. We say that this terminal is in the
“worst situation”. We have assumed, for expositional conveniencehtRat> hyP, > - - > hyPy.

Thus, terminaN is in the “worst situation”, followed be termin&l — 1, and so on down to terminal

1, which is in the “best situation”.

After calculating the vector of received power that produces the vector of desired SIRs for all
terminals,nfeasiblepower levels may result (negative, or positive but too high for some terminals).
In this case, we set the terminal in the worst situation, i.e., terniinab operate at its maximal
power. Then, we re-calculate the power vector necessary fasttier terminals to achieve their
desired SIRs, under this new operating condition. If this new vector (of dfdet) is feasible, we
stop; otherwise we set the terminal in the second worst situation (teriindl) to alsooperate at
maximal power, and calculate the new vector (of ofder2) leading to the desired SIR of the other
terminals. If this new vector is feasible, we stop; otherwise, we continue recursively. We end with
M terminals operating at maximal power, and each of the remaining ones operating at the power
level which allows it to achieve its desired SIR.

C.3.2.2 Capacity cost of serving a terminal in a bad situation

One may be tempted to rule out SIR vectors which demand power levels that are “too high” for any
one of the terminals. One could accomplish this by modifying, as in [32], the feasibility condition
given by inequality (C.3) as follows :

2 2
, 9 i <hPi—s0<1— = 9 —
1-50Gk ~ GrhiPx
N 1 2
Sl o e
=1 G mkln{GkhkPk}

Without power limitations, the capacity of the cell is determined by inequality (C.3). Thus, we
can think that, when each terminal is powstimited the cell capacity is unity. But with power
limits, the feasibility inequality becomes (C.7). Thqékhkﬁ(/oz)*l can be interpreted as the
amount of “capacity” which has to be sacrificed in order to accommodate the power limitation of
the terminal in the least favorable situation. The sacrificed capaditgisasingin the terminal’s
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SIR, butdecreasingn its spreading and path gains, and totally vanishes if its transmission power
is unlimited. Notice also thaBchcP« can be written aéP.. Thus,hs = Gchk can be called the
“effective” path gain. When all terminals have the same transmit power Inmétetermines, which
terminal is in the “worst situation”. For instance, a terminal in a bad location filgwnay do
reasonable well if its spreading gain is “large” with respect to its desired SIR .

GrhiPx could be very small for some terminal, which would happen, for example, when a ter-
minal operating at a high data rate (I&) and demanding a high SIR is very far from the BS (low
hy). In such case, the right-hand-side of inequality (C.7) could also be very small, or even nega-
tive, which would substantially reduce or totally vanish the set of SIR vectors that can be supported
(“capacity region”).

C.3.2.3 One terminal at maximal power

For expositional convenience, we have already assumed that tersimahimizes the RHS of
inequality (C.7). First, notice that even if more than one terminal failed to reach the level given
by equation (C.4), we should start settiogly terminalN, at maximal power. By hypothesis, the
maximal received power from this terminal is less than that given by equation (C.4). Thus, other
terminals will experience less interference in this scenario, than they would have, if teishinal
had been able to reach the specified power level. Therefore, it is possible that a terminal which
previously could not reach the power level necessitated by its desired SIR, may be able to do so
nNow.

In this scenario, the received power from termihBIQy, is presumed fixed dinPy = Q_N,
while others need to be found to satisfy :

Q1
sQi+32 G
#

(0F (C.8)

wheres2 := Qy+02.

Evidently, equation (C.8) leads to a system of equations analogous to (C.2), except that it is of
order N-1, andzf replacess?. From the development leading to condition (C.3), the feasibility
condition for the existence of a non-negative solution of this new system is:

N-1 1

S = =<1 (C.9)

k; Gk
Likewise, if inequality (C.9) is satisfied, a unique solution exists, in which the first N-1 components
of the received power vector satisfy:
., Quto?1
Qu=—"— s G (C.10)
Notice that if inequality (C.3) is satisfied, so is inequality (C.9). But the converse is obviously not
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true. This suggests that we can apply the current procedure, even when inequality (C.3) has failed,
at the outset.

C.3.2.4 Several terminals maxed out

After proceeding as in section C.3.2.3, we may find that ternfihall, which is in the second

worst situation, cannot reach the power level given by equation (C.10). In this case, as discussed in

section C.3.2.1, we would set both terminbl&ndN — 1 to operate at maximal power, and check

whether each of the remaining terminals is able to reach the power level leading to its desired SIR.

If this is not the case, we would then set terminils- 2 throughN to operate at maximal power,

and verify if each of the other terminals has enough power to achieve its desired SIR. And so on.
The verification step, withM terminals operating at maximal power proceeds as follows. The

received power for=N—-M+1 ... N are presumed fixed &P = @ while others need to be

found to satisfy :

- 1
Yo QitZy G
J#i
N _
with, 38 := 0%+ Q
i=N=M+1

Evidently, equation (C.11) leads to a system of equations analogous to (C.2), except that it is of
order N-M, and>%, replacess?. From the development leading to condition (C.3), the feasibility
condition for the existence of a non-negative solution of this new system is:

N—M

k; Gk
If inequality (C.12) is satisfied, a unique solution exists, in which the first N-M components of the
received power vector satisfy:

32 Ai
1-—su Gy
If Vi, G = G, the feasibility condition (C.12) and equation (C.13) become, respectively:

Q=

(C.13)

SM = NéM <1 (C.14)
Q= G—NM+M (C.19)

C.4 Discussion

In situations of practical interest involving data or media transmission in 3G wireless networks, each
terminal may desire a certain optimal SIR, but it may be able and willing to function at sub-optimal
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SIR levels. We have presented an analytical procedure to allocate power when some “flexible”
terminals cannot reach the power level leading to their optimal SIR, because of power limits and
poor location, for example. The procedure is analytical, and the necessary closed-form expressions
are provided. In general, we end withterminals operating at maximal power, and the remaining
ones achieving their desired SIRd.can be as low as zero (each terminal achieves its optimal SIR),

or as high ad (no terminal achieves its optimal SIR).

If each of theM maxed out terminals achieves an SIR which is in its acceptable range, the
obtained power allocation is perfectly reasonable. It allows eadth-eM terminals to operate at
its optimal SIR (“satisfied” terminals), while giving each maxed-out terminal an acceptable SIR.
Furthermore, this allocation is an “equilibrium”, in the sense that no terminal would be better off
by unilaterally changing its transmission power. This is clear for the satisfied terminals, because
any such terminal, bynilaterally changing its power, would move its SIR away from its preferred
level. And a maxed out terminal would like to beéinnotincrease its power level to raise its SIR
closer to its desired value.

On the other hand, if some of the maxed out terminals end up with SIRs that are “too low”, it is
not clear what should be done. Lowering the SIRs of some/all of the satisfied terminals just enough
so that, if possible, the terminal in the worst situation can reach its minimum acceptable SIR seems
reasonable, provided that the new SIR for each of the terminals is still acceptable. On the other hand,
one could argue that the satisfied terminals should not be sacrificed for no fault of their own, to help
poorly situated terminals. These terminals could possibly wait for a better channel condition (due
to their movement, for example), without disrupting the satisfaction of better situated terminals.

If a decision is made to turn off maxed out terminals whose SIR (in the final round) are “too
low”, this must be done sequentially, starting with the terminal in the worst situation. Once this
terminal is powered off, the power vector needs to be recalculated, because, with less interference,
each terminal needs less received power to achieve a given SIR; thus, the terminal in the second
worst situation may now be able to reach its desired SIR, or at least an acceptable SIR, if it could
not do so before. If this terminal’s SIR is still unacceptable, then it should be turned off also, and
the power vector recalculated once again. And so on.

Sacrificing the better situated terminals to help the poorly situated ones is, essentially, a “Robin
Hood” scheme (to steal from the rich to help the poor). The appropriateness and fairness of such
scheme is more a philosophical issue than an engineering one.
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Appendix D

The Capacity of CDMA systems with
Multiple Antennas at the Receiver

As described by Hanly [9], macrodiversity is a scheme in which the cellular structure of a wireless
communication network is removed and “each mobile...(is)...jointly decoded by all receivers in the
network”. Alternatively, one can think of a single-cell network equipped with several receiving
antennas, possibly distributed in various locations throughout the cell. Hanly [9] shows that this
scheme can significantly increase the capacity of a CDMA wireless communication network.

The macrodiversity capacity results provided by [9] assume that the transmission power of each
transmitter contributes to its own interference. This approximation is generally appropriate for a
CDMA system in which each transmitter’s spreading gain is “large”, which, normally means that
its (pre-spread) “carrier to interference ratio” is “small”.

But modern wireless networks are expected to accommodate simultaneous transceivers operat-
ing at a wide range of data rates. “Variable spreading gain" (VSG) CDMA is one of the technolo-
gies through which new standards accommodate such multi-rate traffic (see for instance, Nanda,
et al.[24]). In a VSG-CDMA system (see | and Sabnani[11]), each transceiver's spreading gain
is determined as the ratio of the common chip rate to the transceiver’'s data rate. Thus, high data
rate sources generally operate with “low” spreading gains, and “high” carrier-to-interference ratios.
Under these conditions, the “self-interference” approximation may not be appropriate.

Explicitly considering transmission power limits, and without recurring to the “self-interference”
approximation, this note derives results determining the capacity region of a CDMA cellular net-
work under macrodiversity. The “complexity” of applying the new results is comparable to that
of the approximated ones. The analysis is grounded on the Brouwer’s fixed point theorem and the
Banach'’s contraction mapping principle, two well established mathematical results.

Below, the basic macrodiversity relation is presented, first in the traditional form, and subse-
quently in matrix form, in terms of convenient new variables. Then, it is shown that the basic
macrodiversity capacity question is equivalent to determining whether certain meaningful function
has a fixed point. Subsequently, conditions are identified under which the desired solution ex-
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ists. Moreover, further conditions are explored under which this solution is unique, and can be
determined through an intuitive, well-behaved algorithm. Finally, the results are interpreted and
discussed. Space limitations preclude a comprehensive comparison between the new results and
those previously available. Nevertheless, some brief contrasting comments are made, highlighting
the fact that the new results are less conservative, which can make a significant difference in the
throughput of a 3G system.

A mathematical appendix introduces the essential mathematical terminology, and some techni-
cal results.

D.1 The macro-diversity framework

D.1.1 Basic relation

Under macro-diversity, the cellular structure is removed and each transmitter is jointly decoded by
all “receivers” (base stations, or antennas in a single cell). Hanly [9] argues that, in this situation, a
relevant QoS index for terminals the product of its spreading gain by, defined as:

Rhi Rhik

> Pihjy + 03 5L Pihjk + 0%
7 i

(D.1)

(oF

K is the number of “receivers” in the network, ahg is the “path loss” coefficient in the signal
from terminali when received &. a; can be thought of as a desired “carrier to interference ratio”
(CIR).

D.1.2 The Capacity question

t
Conditions are sought under which a given N-vector of positive numﬁeﬁs,[ a1 -+ ON |,

is such that there exists another N-vector of positive numt{em, X ]t, satisfying appro-
priate constraints, and equation (D.1) for eaclf this is the case, the system Nfequations like
(D.1) has a feasible solution, and the vector of power ratigssaid to be in the “capacity region”
of the system.

D.1.3 Normalizations and re-formulations

Noise normalization. Let all powers be divided byg? +- - - +0%. Also, letvy = 62/(05+ - +0%).
Although this normalization introduces no notational change on the power vector, it is understood
that henceforth all powers are expressed as multiple of the total noise péwer- +a%.

Total received power from a given transmitter. Let

K
Q=R hi (D.2)
=1
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Scaled power Letq; := Q;/a; (The total received power from terminiaik “scaled” by that termi-
nal’s desired CIRy;).

Relatives lossesl et

ik := (D.3)
| 51 hij
The power at receiver k coming from transmititglP hix = gik i g
Now, the basic macro-diversity equation can be restated as:
Gidi1 I Qi9ik 1 (D.4)

Z'jil_ajq;gleer ZT:;GJQJ'QJK VK
J# J#

Notice thatP, = a;q;i/ ZE:1 hi, which is measured as a multiple of the total noise pomie% et
2
Og.

D.1.4 Macrodiversity matrix relations

Let \
Yi(d) =) @;jdjgjk+Vk (D.5)
E
Yik(T) can be written as the scalar product of vectors as:

O -+ O-1ik O Gitik -+ Onk |-DO+vk
with
ap 0 O O
O ap 0 O
D:= (D.6)
O o . 0
0O 0 0 an
so that,
0101
D= | 2"
ONON
N t
It will prove useful to recognize the vectorgq) := [ Yig --- Y, } .

By “stacking” these interference vectors, one arrives at a “macro-vector” of length NK satisfy-
ing:
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V] o | [V
Y 02 v
Y= ; =GD| |+ (D.7)
Y1 aNn-1 v
R N | |V
whereg is a matrix defined as
[0 G -+ On-i On | G*
g 0 -+ Ov-1 On G*
G G -+ 0 g GN-1
[ G @2 - O O] | gN |
with 0 the zero vector of appropriate length, and
Oi1 V1 Y,
g ;= : Vi=| V= : (D.9)
giK VK v

The matrixGD is some times denoted @& G* (respect.G¥) may denote the specifiow of G
(respect.@) “matching” Yi, with gi (respect.@i) the corresponding sub-matrix. Thus,

Yik = G*-D-q+vk= G*-d+vi (D.10)

The preceding notational transformations can be clarified by considering the specific case in which
there areN = 3 transmitters an& = 2 receivers. In this case:

o} ap 0 O]
d=| o D= 0O a, O
(0] 0 0 az |
a101 1
. Y, 0 v
¢, = | M| Q21 Oa1 Wt |+ 1
Y12 0 g2 O3 V2
303

Il
—
ol
QI
N
&
(I
v
Ol
+
<
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a101
. Y, 0 V
Y=| 2| = 011 O31 ap |+ 1
Y22 g2 0 03 7
303
= |6 0 g |Dg+v
a101
_ Y.
Vo= | T3 _ Oun 922 O oty | + V1
Y32 Oi2 G2 O Vo
a30s
= [Ql g2 G]quLv
i ]
. Y-
% Y12
?E ?2 = 21 =
v Y22
3
Y31
._Y32_
[ 0 gxn g | [ vy ]
0 02 0 o V2
101
gin 0 031 V1 _
axgp | + =
g2 0 03 asq 7
303
Oir 921 O V1
| 012 G2 O | Rz
0 G O V]
g O Oz [DO+ |V
g g2 O V|
D.2 A fixed-point problem
Equation (D.4) can now be re-written as:
Gigi1 Gigik
g 90K g D.11
Yi Yik ( )

For afixedinterference vecto¥ this equation can be easily solved éprto obtain the vectolj which
would satisfy the system of equations of the form (D.11). This suggests the following approach. For
a givenY, define the transformation:
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-1
(Ylll(lfﬁ Tt YlKl?d))
T(0) = : (D.12)
-1
ON.1 ONK
(vm@ oot YT.K@'))
T’(d) yields the power vector under which each transceiver would achieve its desiiethe in-
terference vectoY remained fixed. Of course, as the power levels are adjusted, a new interference

vector results?(d) = gDCIJr\j/. This new vector will lead to further power adjustments, and so on,
in an iterative manner.

Under the appropriate conditions, this algorithm will “converge” in the sense that a \gctor
exists such thaj® = T(g); i.e.,d" is a “fixed point” of the mapping . These conditions determine
the feasibility of the ratiosi;.

D.3 Mathematical results

Several well-known results useful in solving fixed point problems are presented below. Some rele-
vant background material is discussed in a mathematical appendix.

D.3.1 Background material

Let S denote a vector space (for a formal definition of these spaces see [17, pp. 11-12]).

Norms and metrics. A norm ||-||, on S is a function from S into the non-negative real num-
bers, “generalizing” the idea of the “Euclidean length” of a vector. It engendermetfic’
(‘distance’), defined ad(x,y) = [|[x—VY]|.

Infinity norm. |-||, is defined as
X0 = max([xal, [xel -~ , [xn]) (D.13)

Linear operators. If T is a mapping from a vector spa&&, into anothers, (i.e.,T: S — ), it
is said to bdinear if forany x, y € S andA1, Az € O, T(Ax+A2y) = AT (X) + AT (y).

Theoperator norm of a linear operator is defined as

T(X
7= sup T = sup r (0.14)
2o X =2
where sup denotes the supremum or least upper bound.

Matrix infinity norm . When a linear operator is expressedlds) = Ax, with A a suitably
dimensioned matrix, and the underlying nornfji§,,, its “operator norm” is the “maximum absolute
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row sum” of A. If a; denotes the element corresponding toitheow and " column of matrixA,

A, ;= sup |AX = m_ax(Z |aij \) (D.15)
[Ix][=1 ! ]
Row sum of the product of two non-negative matrices|f A andB are suitably dimensioned
non-negative matrices, the row sum of the proda&, can be obtained as the prodéctrsumB),
with rsum(B) the vector resulting from the sum of the columndBof

D.3.2 Brouwer’s Fixed Point Theorem

Theorem(Brouwer’s): LeT : S— Sbe a continuous function from a non-empty, compact, convex
setSc O"intoitself. There is ag € Ssuch thatg = T (xo).

Proof: See [3, p.28].

D.3.3 Banach’s result

Contraction Mappings. Let S be a vector space endowed with the ndfin SupposeT is a
mapping from S into itself (i.e.T : S— 9. If there is a real numbek, 0 < A < 1 such that
IT(X)=T(y)|| <A|x—y]|forall x,y e SthenT is said to be &ontraction mapping

Successive approximationFor expositional convenience, [Ef'(x) for x € Sbe defined induc-
tively by T9(x) = xandT™?1(x) = T (T™(x)), withme {1,2,---}.

Banach’s Contraction Mapping Principle: Let S be a closed subset Bf". Suppose that
is a mapping from S into itself. [T is a contraction mapping on S, there is a unique vegi@a S
such thatxg = T(xp). Moreover,xp can be obtained by “successive approximation”, starting from
an arbitrary initialx € S; i.e., for allx € S, liMm— TM(X) = Xo.

Furthermore,
m

m
%l <
ITm60 ol < £

IT() =X
Proof: See [13, Theorem 3.1, page 41].
More general versions of this result, and many extensions can be found in many sources, includ-
ing [13].
Contraction condition for differentiable mappings. If the considered vector space Smvex
and the considered mapping is such that its derivatiy&) exists over S, then for am,x; € S,

andL := {Xx=x3+t(x2—x1) : 0 <t < 1} the mean value inequality holds that

IT(xa) =TI < igLIOHT'(X)H 11 —a]| (D.16)

Hence, in this situatiof T'(x)|| < A < 1 implies thafT is a contraction mapping on S [17, p. 272].
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D.4 Fixed points, and algorithms

D.4.1 From Sinto S

In order for the previously-mentioned results to be applicable to the mafHidyg it must map
vectors from an appropriate set, to vectiorthe sameset.

D.4.1.1 Set of scaled power vectors

In general, any feasible scaled power ve@anust be in the seb:= {q € Dﬂfo <g< qL} with
d- the “largest” feasible total received (scaled) power vectoPIfs the transmission power limit
of transceivei, g- = (1/a;)P- TK_; hi.

This set is closed by definition. It is straightforward to verify that it is also convex.

D.4.1.2 “into” condition

It is immediate that each compon€htd) is increasing in each component¥%f And each com-
ponent ofY; (q) is increasing irg. Therefore, to verify thal () is in S, the critical value isT (g-).
Specifically, it is necessary th&td-) < g- or that, (see equation (D.12)),

g g Oik O
Yilqu) L YiKK(qL) =1 (b-17)

where, by equation (D.5¥(d") = 3, a;argjk + Vi.
j#i
Recall that? hy, = gikaiqgi. Hence, the preceding condition can be written as:
Rthiy Pthik

< — ..
511 PHhj v S0 Prhie + Vi
1A J#i

(D.18)

(oF

It may be reasonable to assume tRat= Pl Vi, and thatvy/P" is “very small’ as compared to
Z,j\lzl hjk. Then, condition (D.18) becomes:

J#
hi1 hik
a; < +t (D.19)
| Z'i\lzl hjl Z'j\lzl hiK
J# J#i

D.4.2 Existence of a fixed point

Proposition: If a vector of desired CIR, is such that condition (D.17) is satisfied — or so is the
“neater” condition (D.19), under the mild assumptions under which it is valid —dhisrfeasible.

Proof: The set S of feasible (scaled) power vectors is a closed, bounded and convex subset of
ON. If condition (D.17) or, when appropriate, (D.19) , is satisfied, the mappif is into. It is
considered self-evident (and can be shown) that this mapping is continuous over the set S. Therefore,
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Brouwer's fixed-point theorem applies (see section D.3.2). Heh@},has at least one fixed point.
Q.E.D.

However, Brouwer’s theorem says nothing about the uniqueness of the solution, or the behavior
of the algorithm discussed in section D.3.3.

D.5 Toward a unique fixed point

This section explores conditions under which the norm of the derivatiFeg@fis less than one, so
that Banach’s principle can be applied. In this case, a unique fixed-point exists, and it can be found
via a simple, well-behaved algorithm (see section D.3.3).

D.5.1 Derivative of T (d)

T'(d) is given by the corresponding “Jacobian” matrix of partial derivatives, wbi§r@q; corre-
sponds to its!" row andjt" column. From equation (D.12),

-1
di1 Oik
T(d) = NI D.20
@ (v i) (020
Thus,
0Ti 0Ty dYiy 0T dYi2 dTi dYik
=4 D.21
dq; 0Yi1 dq;  0Yi2 dq; dYik 0Q; ( )
0Ti/dYy is obtained as:
-2 2
G, (vil +82 YiK) — g (m) (D.22)
Additionally, by equation (D.5)Yik(q) = z’j\‘:l a;Qjgjk +Vk. Therefore,
J#i
M _ ) Oforj=i (D.23)
0q; ajgjkfor j #i

Replacing equations (D.22) and (D.23) into equation (D.21) one obtains that

9T, /9 = OVi (D.24)
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and, forj #1i, 0T /0q; =

T-2

<gi16Yi1 Gi20Yi2 LS 0YK>
Y 0q; Y5 oq k 0a;

g g ik
ajTi2<Y'§911+Y'§ng+ +Y291K> —
K
JikJjk
T (D.25)
PR

—

D.5.2 Norm ofT’(q)

By definition,
equations (D.24) and (D.25), thi€ row of T(d) adds up to

H is the maximum absolute row sum©f(q) (see section D.3.1). In view of

N oT; K gikOjk
S =7 2 R

M= ETMZ

Oik N
= -ﬁz(q)leE(q)Zngik
— T
= fi(d)pik (D.26)

Observe thapjy := Z’j\l:lajgjk — 0igik is the sum of the components éf"‘, which is the row of the
matrix GD = G associated witlYy (see equation (D.10)). It represents the parameters in equation
(D.26) which can be influenced by limiting the vecir For a givend, the functionfy(g) :=

T2(4) TK_, 0i/Y2(T) is determined by the channel via the various path loss coefficients.

D.5.3 Contraction condition

On the basis of the preceding development, in orderd(d) H <1so thaff(q) is a contraction,
a must be such that
max fi(@)pik < 1 Vi, k (D.27)

with pi the sum of the components @fk(see equation (D.10)) anf (d) given by:

g1 _|_ cot gik.
(D.28)

D.5.4 Properties of the Contraction Condition

1. Well-definedness Condition (D.27) is well defined, becau§gis a continuous function, for
which it must have a maximum over a closed and bounded set (see sec. (D.4.1.1))
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2. fix>1. Thisis so becausk is of the form(A1@(x1) +- - + Ak @(Xk ) ) /@(A1X1 + - - - + Ak Xk )
with @(x) = X2, Aj € [0,1], 3;Aj = 1 andx; positive. The functionp(x) = x? is easily shown to
by convex. And for any convew, Jensen’s inequality holds thBt@(x1) + - - - + Ak @(Xk) >
@(A1X1+ - -+ AkXk ). (See also section D.5.6).

3. If §is such that(d) = Vi () vk, | then fi(T) = 1. This follows directly becausg, gk = 1
by definition (see equation (D.3))

4. If each transceiver is “equidistant” to each “receiver” (antenna), in the sensdythat
hi Vi, kI thenfy(g) = 1. This also follows directly because in this cage= gy = 1/K Vi, k|
(see equation (D.3)). In this case, the contraction condition (D.27) redudesd , =
160, <1

5. In the special case in which K=2, the maximuig is attained for the particulag which
creates the largest “separation” betw&grandYj,. (See section D.5.6).

D.5.5 A unique solution and an algorithm to find it

Proposition: If a vector of desired CIRi, is such that condition (D.17) , or, when appropriate,
condition (D.19), is satisfied, and so is condition (D.27) above, thexfeasible. Furthermore, the
power vector leading td is unique, and can be obtained via the well-behaved algorithm described
in section D.3.3.

Proof: The “power set” S is a closed subsefBif(see section D.4.1.1). If condition (D.17) , or,
when appropriate, condition (D.19), is satisfied, the transformati@j) is a mapping from S into
S. If condition (D.27) is also satisfied, is a contraction mapping. Therefore, under the hypothesis
of this proposition, Banach’s principle applies (see section D.3.3). Q.E.D.

D.5.6 Maximum of an interesting ratio

It is of interest to determine a supremum of the form

sup G+ (1—N)x3
0<Xp<X1,X2<X3 ()\Xl + (l - )\)XZ)Z

(D.29)

where 0< A < 1 s fixed, andk; < x» are positive real numbers in certain interval.

The above ratio is a continuous function for which it must necessarily have a maximum over
any closed and bounded set.

Also, X312 := Ax1 + (1 —A)X2 is simply a convex combination (“mixture”) of andx; i.e., a
point betweernx; andx,. Likewise,Ax§ + (1 —\)x3 is a “mixture” of x2 andx3, with the same
“mixture” parameten (see figure (D.1)).

The functionf (x) := x? is easily shown to be convex. And, by definition, any convex function
satisfiesA f (x1) + (1 —A) f(x2) > f(Axq + (1 —A)x2). Therefore, the ratio (D.29) is always greater
than or equal to 1.
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2 2 2
XXO+(1 —7\)X3 y=X
2 2
L A +(1-A)x; B

X+ (1-0)x,)%
(Ax, +(1-2)x,)?

1 1 \12 1

X
0 X Xo3 X5 3

Figure D.1: Maximizing an interesting ratidx? + (1—A)x? versus(Ax + (1—A)x;)?

It is straightforward to verify that the first-order optimizing conditions for this ratio are satisfied
wheneve; = X. Butin this case, the ratio equals 1, which is its smallest possible value. Therefore,
the maximum is attained over the boundary of the feasible regionxi.e. Xp andx, = x3 leads to
the maximum.

D.6 Discussion

This note provides an answer to the question of whether a certain véctof,positive numbers
interpreted as desired “carrier-to-interference ratios” is feasible in a macrodiversity CDMA envi-
ronment, in the sense that there are feasible power levels which produce the desired ratios. The
answer is in the affirmative whenever condition (D.17) is satisfied. Under mild assumptions, this
condition takes the simple forog < A;, with A; a relatively simple function involving ratios of the
various path loss coefficients of the active transceivers. However, not much can be said about the
underlying power vector, or the performance of any particular algorithm in finding it.

This note also explores a more elaborate condition, (D.dégetherwith condition (D.17),
condition (D.27) implies that the power vector leadingit@s unique, and can be found by way of
a well-behaved simple algorithm. This algorithm can depart from an arbitrary power vector. It is of
the formx™1 = f(x") with x° arbitrary. A simple expression gives the “error” after a given number
of iterations.

In general, condition (D.27) depends on the maximum of a relatively simple function. More
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research is needed to determine the practical implications of obtaining this maximum, or a reason-
able approximation for it. However, in special cases, in particular when each terminal happens to
be “equidistant” from the antennas, this condition reducegid||,, < 1. In words, this condition
requires that the “largest weighted average” of the desiristbe less than one. The possible weight
vectors are the rows of the “relative gains” matgx It is significant that each row of this matrix
always has at least one element equal to zero, which implies that, in verifying this condition, at most
N-1 of theq;’s are simultaneously weighted.

Space limitations preclude a comprehensive contrasting of these results to those originally pre-
sented in [9]. Nevertheless, some brief comments will be made.

First, condition (D.17) does not have an obvious “counterpart” in [9]. The result derived in [9]
under the “self-interference” approximationz’ilai < K, which limits the sum without imposing
an individual limit on each term. However, one can make a rough comparison by assuming that
condition (D.19) applies and is satisfied by eacland that each terminal is “equidistant” from
each antenna so thiak ~ hy ~ h; Vi, k,1. This symmetry would practically arise, for example, with
K = 2, if the two receiving antennas are directly across from each other in opposing sides of a road
segment, and each terminal is located along the axis of this segment. When this symmetry exists,

NO(<NK hy KZiNzlhi>K
i S =~
izl iZl Z,j\l:; h; Z'j\lzl_ h;

J# J#i

This indicates that condition (D.19) is “less conservative” that the approximated condition from [9].

The more elaborate condition, (D.27), may also be compared, with caution, with the approxi-
mated result from [9], by considering, again, the special symmetric situation. In this case, condition
(D.27) reduces td|Gd||,, < 1, as remarked above. Additionally, eagh = 1/K (see equation
(D.3)). Therefore, thg™ row of this matrix has the fom@l/K)[ 1 .- 1011 }
where the only zero is at th#" position (see equation (D.8)). Hence, the product ofjtheow of
G by @ simply adds all the components @fexcept foraj and divide the sum biK. For example,
with 3 terminals, the second row dfis (1/K) [ 1 01 } and the product of this row by equals
(a1 +az)/K. ||Gdll,, simply picks out the largest component of the prodgdt The j'" compo-
nent of Gd is a sum of the form{yN; a; —a;) /K. Thus, the largest component & will be the
one that leaves out of the sum the smallest componeait &or instance, ity happens to be the
smallesty;, then|| Gd||,, = (1/K) N7 ai. Hence, in the “symmetric” case, the approximated result
demands thazi’\‘zlo(i < K, whereas condition (D.27) only imposes trzﬁjllo(i < K (assumingiy
is the smallest desired CIR).

It is stressed that, in the context of a 3G network, when relatively few high data-rate terminals
may be sharing a channel, the less conservative results could make a significant difference. For ex-
ample, suppose K=1, and that three high data-rate sources wish to share a channel, each demanding
a CIR of 2/5. This is plausible in a VSG-CDMA situation (see introduction). The approximated
result dictates that only 2 of them can be accommodated, whereas condition (D.27) indicates that all
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three can, “with room to spare”. In a 3G environment, leaving, unnecessarily, out even one terminal
could be significant, if, as presumed, the additional terminal would have transmitted megabits of
data each second.
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