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ABSTRACT

Scalable encoded information, as in the JPEG 2000 stan-
dard, results in files which can be truncated at an arbitrary
point and decoded. This work introduces a tractable, yet
flexible model appropriate for resource management involv-
ing scalably encoded information. At its core is a function
yielding a measure of “quality” of the decoded information
as a function of the number of bits chosen for decoding. It
is assumed that all that is known about this function is that
its graph yields an “S-curve”. An energy-efficient policy
for the transmission over a wireless network of scalably-
encoded images is sought. Two variables are jointly opti-
mized: transmission power, and the number of bits of each
file to be decoded (“coding rate”). The single-user case is
fully analyzed, and a closed-form solution given, which can
be clearly identified, graphically. The analysis indicates that
both variables can be “decoupled”, and their optimal values
found independently of each other.

1. INTRODUCTION

At the foundations of the JPEG 2000 image compression
standard there are ideas found in the embedded zero-tree
wavelet coding (EZW) algorithm introduced by [6], a tech-
nique which produces a fully “embedded” bit stream[7]. An
embedded bit stream is “scalable”, in the sense that it can be
truncated at an arbitrary point, and decoded. If bits are de-
coded as they are received, at any instant the “quality” of
the decoded information is the best available for the num-
ber of bits received up to that moment. Thus, an image com-
pression ratio can be varied simply by truncating the coded
bit stream. Similar ideas can be applied to video coding.
In fact, fine-granular scalability (FGS) is at the core of the
MPEG-4 video-compression standard.

Scalable coding can be fruitfully exploited in many prac-
tical applications, including: (i) image database browsing
(ii) progressive image transmission (where the consumer
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can examine the improving decoded image as bits are re-
ceived, and can abort the transfer when the image quality
reaches a satisfactory level), and (iii) multimedia web serv-
ing (a single file can serve a variety of consumer require-
ments and capabilities, as well as congestion/channel con-
ditions).

These files introduce interesting resource management
issues, because their special structure can be exploited to
allocate scarce resources efficiently. Such analysis neces-
sitates a relatively simple model combining the properties
of analytical tractability, with flexibility to accommodate a
wide variety of situations. This work proposes such model.

In the situation under study, a terminal with a limited
supply of energy and a long sequence of scalably encoded
images to transfer over a wireless link seeks to manage its
energy efficiently. At the center of this inquiry is a function
yielding the “quality” of the resulting information (image)
in terms of the fraction of the encoded file which is chosen
for decoding. It is postulated that all that is known about
this function is that its graph is an S-curve, as introduced in
[4] and discussed further in [5] (see fig. 1).

There are practical reasons why the S shape is chosen.
An arbitrary S-curve starts out convex and smoothly tran-
sitions to concave. But the inflexion (transition) point is
arbitrarily placed. Therefore, this curve in fact contains as
special cases a (“mostly”) concave curve (inflexion point is
“very close” to the origin) and a (“mostly”) convex curve
(inflexion point is “very far” from the origin). Thus, by as-
suming an S shape for the function giving the “quality” of
the image recovered from the truncated file in terms of the
number of decoded bits, this work allows not only the S-
shape proper, but also the concave and the convex shape.
These three shapes should accommodate most, if not all sit-
uations of interest.

Additionally, as discussed in fundamental psychology
texts (see, for instance, [2, Chapter 7]), the S-curve natu-
rally arises in psychophysical experiments involving human
perception. In these experiments, a graph is made in which
the horizontal axis denotes the “intensity” of a stimulus ap-
plied to a subject. The vertical axis denotes the probability



that the subject correctly identifies or detects the presence
of the stimulus. These graphs have often the shape of fig. 1.

The peak signal-to-noise ratio (PSNR) is the image qual-
ity metrics most commonly found in the literature. This
is a simple to calculate index, which can be sensible and
useful in many situations. However, as an indicator of im-
age quality as perceived by a human observer, the PSNR is
at best a very crude measure. Dansereau and Kinsner [1]
argues this further, while proposing a metrics specifically
aimed at progressive image transmission: the Renyi dimen-
sion spectrum. But this measure is much too complicated
for resource management studies.

This analysis also depends critically on a function giv-
ing the probability of success of the transmission of a data
packet in terms of a signal to interference measure at the re-
ceiver. This “frame-success” function (FSF) is determined
by the physical layer of the system. It can be safely as-
sumed that for any physical layer, any such function has an
S-shaped graph. Thus, two different S-curves are at the core
of this analysis.

The single-terminal case is fully analyzed, and the foun-
dation is laid for a multi-terminal analysis. The problem is
set up as a joint optimization in which two key variables are
jointly optimized: transmission power, and the number of
bits of each file to be decoded. A closed-form solution is
given.

The scientific literature contains various works involv-
ing power allocation and the transmission of scalably en-
coded information. The most relevant may be [3], which
considers files which have been “layer coded” (a form of
discrete scalable coding) and seeks a power allocation pol-
icy across the various layers, minimizing the overall end-
to-end distortion. However, previous works seeking a joint
power, and coding rate selection in order to maximize an
image quality metrics appear unavailable.

2. CONCEPTUAL FRAMEWORK

2.1. Quality as a function of the number of decoded bits

At the center of this inquiry is a function yielding the qual-
ity of the decoded image as a function of the number of bits
in the fraction of the encoded file which is decoded. Im-
age quality is a subjective matter. Nevertheless, certain ba-
sic assumption can be made about the properties of a func-
tion giving quality as a function of received bits. About this
function, it is postulated that:

1) Its domain is the interval[0,M ], whereM is the
length in bits of the entire encoded file.

2) Its range is the interval[0, 1]. This is just a normal-
ization. A 1 denotes the best possible quality of the decoded
image (say the quality of the original).

3) It must be strictly increasing (more decoded bits yield
a better image quality, by design)

4) Its graph is S-shaped, as in figure (1). In practical
terms, sigmoidness further implies that: (a) If the number
of decoded bits is sufficiently large, the quality of the de-
coded image will be sufficiently close to “perfect”. (b) Af-
ter a sufficiently large number of bits have been decoded,
the marginal contribution to image quality of an additional
bit becomes “very small” and is decreasing. (c) If the num-
ber of decoded bits is sufficiently small, the quality of the
decoded image will be sufficiently close to zero. (d) Bits at
the beginning of the encoded file contribute to the perceived
“quality” of the image at an increasing rate (“initial convex-
ity”). One plausible interpretation is that even a highly dis-
torted image may provide enough information to identify its
“meaning” (what is it? a bird?, a person’s face?, etc.). This
essential semantic information is provided by the bits at the
beginning of the encoded file (“base layer”) .

References [4, 5] discuss the technical characterization
of a generic S-shaped function. A fixed function could work
for different images, in particular if the images are suffi-
ciently “similar” (e.g., each corresponds to a passport pic-
ture of a respective adult).

2.2. A Generalized frame-success function

The frame-success function (FSF) yields the probability that
a data packet is received successfully as a function of the
received signal to interference ratio. This function is de-
termined by physical attributes of the system, including the
modulation technique, the forward error detection scheme,
the nature of the channel, and properties of the receiver.
It is assumed that all that is known about the FSF,fs, is
that its graph exhibits a sigmoidal shape as in figure (1).
More specifically, it is assumed that the function defined by
f(x) = fs(x) − fs(0) obeys the properties of the gener-
alized sigmoidal function introduced in [4] and discussed
further in [5].

3. SINGLE-USER ANALYSIS

3.1. Problem statement

The problem faced by a single transmitter in a wireless ( in
particular CDMA) network can be formulated as follows.

It is taken as given a (1) certain amount of energy,E,
available for transmission, (2) fixed transmission rate ofR
bits per second, (3) long sequence of files each of lengthM ,
each divided into blocks of bits (packets/frames) of length
L � M and each corresponding to equally importantsim-
ilar images encoded scalably, (4) functiong as defined in
section 2.1 giving the quality of an image obtained by de-
coding a truncated encoded file as a function of the numbers
of bits decoded, (5) certain level of interference (noise), (6)
functionfs as described in section 2.2 giving the probabil-
ity that a data frame is received successfully as a function
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Fig. 1. An “S-curve” and some of its tangents

of the signal to interference ratio at the receiver.
The transmitter wants to choose optimally (i) the num-

ber of successfully received bits at which point a given file
can be considered successful, so that the transmission of
the next file is started (that is, the “optimal” level of image
quality at which point it is considered “good enough”), and
(ii) the transmission power. The objective is to maximize
the weighted number of images transferred by the time the
available energy runs out, where the weight is the quality of
each image. This criterion can also be stated as maximizing
the “total quality” transferred.

Because packets have been assumed much smaller than
a file, the fact that the number of bits in a frame and file is an
integer is ignored. Because the images are similar enough
(e.g. each image corresponds to a (respective) human face),
the same function works for all images.

3.2. Objective function

Suppose that at a certain instant of time,y < M bits of the
current file have been received. Then,g(y) ≤ 1 gives the
quality of the image that would result if the file containing
the received bits is decoded.

Let Q = P · h be the power at the receiver when a cer-
tain data packet is transmitted with powerP ; and letI be the
interference (noise) power. Then,fs(GQ/I) is the proba-
bility that said packet is correctly received (G is a CDMA
constant, the spreading/processing gain).

Assuming that, once a packet is received in error, re-
transmission is ideal, then the total number of times a given
packet needs to be (re)-transmitted is a geometric random
variable, whose probability distribution is of the formπ(1−
π)k−1, with π = fs(GQ/I). The expected value of this

random variable is1/π, interpreted as the average number
of times the same packet needs to be transmitted to ensure
correct reception.

The average amount of energy that needs to be spent
in order to achieve the successful reception of an image of
qualityg(y) when transmission power is set toP can be ob-
tained as follows. Each packet requires an amount of energy
equal to the product of 3 factors: the powerP , the length in
time of a packet (given the transmission rateR), and the av-
erage number of times the same packet needs to be transmit-
ted to ensure correct reception. EachL-bit packet lastsL/R
secs. Therefore, the average amount of energy required by
a packet isP · (L/R) · (1/π). Sincey bits of data contain
y/L packets, the average amount of energy necessitated by
the successful reception of an image of qualityg(y) is given
by

PL

πR
· y

L
=

Py

πR
(1)

To obtain the average number of images of qualityg(y)
which can be successfully transmitted with an energy bud-
get E, we divideE by the preceding expression (eq. (1)),
and obtain:

πRE

Py
≡ RE

fs(GhP/I)
Py

(2)

To obtain the total received “image quality”, the preceding
expression needs to be multiplied byg(y), the quality of
each image. Therefore, the user wants to maximize

RE
fs(GhP/I)g(y)

Py
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fs(GhP/I)
P

g(y)
y

(3)

For technical reasons discussed in [5],fs(x) is replaced
with f(x) = fs(x)− fs(0). Then we can re-write equation
() as

REGh

I

f(GhP/I)
GhP/I

g(y)
y

∝ f(x)
x

g(y)
y

(4)

with x := GhP/I.

3.3. Optimization Model and Solution

In view of the preceding analysis, the objective of the single
user can be summarized as

max
f(x)

x

g(y)
y

(5)

s.t.0 ≤ y ≤ M (6)

0 ≤ x ≤ x̄ (7)

wherex̄ := GhP̄/I with P̄ the largest available transmis-
sion power.

Notice that the ratios in the objective function (5) are
mutually independent; i.e., one does not influence or con-
straint the other. Therefore, the ratiosf(x)/x andg(y)/y
can be maximized independently, and the maximum of the



product of the ratios can be obtained as the product of the
individual maxima. This problem can be easily solved by
invoking the results provided by [4], and discussed in [5].
Reference [4] finds the maximum of the ratiof(x)/x s.t.0 ≤
x ≤ x̄ wheref all that is known aboutf is that its graph is
S-shaped. The maximizer is the lesser ofx̄ andx∗. x∗is the
abscissa of the unique point where the graph off is tangent
to a ray emanating from the origin (See figure (1) ).

From the preceding paragraph, the maximum off(x)/x
s.t. 0 ≤ x ≤ x̄ is obtained atx∗∗ = min {x∗, x̄}. Likewise,
the maximum ofg(y)/y s.t. 0 ≤ y ≤ M is obtained at
y∗∗ = min {y∗,M}. The single-user problem is solved.

4. DISCUSSION

The problem faced by an energy-limited terminal with a
long list of scalably encoded similar images to transfer over
a wireless link has been solved. A tractable model, based on
two “S-curves”, has been discussed. A closed-form solution
is given in terms of a point which can be easily identified in
the graph of the pertinent S-curve. The analysis leads to
the maximization, over an appropriate region, of the prod-
uct Rf(γ)/P × g(y)/y, whereγ is the received SIR,P is
the transmission power,R the data transmission rate,f is
the “frame success” function,y is the chosen number of de-
coded bits, andg is the “quality” function. Rf(γ)/P has
the unit bits/Joule, well known in the power control litera-
ture (see [5]), while quality/bit is the unit ofg(y)/y. Hence,
the maximized product is an intuitively appealing index in
quality/Joule.

Although the problem is set up as a joint optimization of
power and coding rate, the development indicates that both
variables can be “decoupled”. In retrospect, this seems rea-
sonable. The files are transmitted in small segments (data
packets) which are assumed much smaller than the files,
constant, and independent ofy, the number of bits chosen
for decoding. Power is needed to increase the probability
that a data packet is received successfully. But the physical
layer treats each packet in the same way, irrespective of the
file to which it belongs, or its position within its file. Thus,
the point,y, at which a given file is truncated to start the
transmission of the next file has no effect on the probability
of success of the intervening packets. Future research could
investigate making packet length a variable dependent ony,
a shorter packet length for a smallery.

The S-curve practically contains as special cases a strictly
convex and a strictly concave curve. However, it is shown
in [5] that, if f (respt. g) were strictly concave, the ratio
f(x)/x (respt.g(y)/y) would be maximized at zero. In this

case, the power level,∝ x, (respt. the “truncation point”,
y) should be set as small as possible. Likewise, iff (respt.
g) were strictly convex, then the power level, (respt. the
“truncation point”) should be set as large as possible.

This analysis can be extended to include many termi-
nals sharing a CDMA channel. In this case, each terminal’s
“noise” must include the interference caused by others. The
problem can be set up as a “game” in which each terminal
seeks to maximize its quality/Joule index. In this formu-
lation, the key question is the existence and characteriza-
tion of a “Nash equilibrium” (NE); i.e., a feasible alloca-
tion (of power and file size here) to each terminal, such that
no terminal would be better off byunilaterally changing its
allocation. Both of the ratios (f(x)/x and g(y)/y) mak-
ing up the quality/Joule index are quasi-concave[4]. It is
well-known that a game in which “pay-off” functions are
quasi-concave, and each player’s “strategy space” (power
and file size here) is closed and bounded does have a NE.
Game theory has been fruitfully applied to the transmis-
sion of conventional data over a wireless channel, in [5] and
other works.
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