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Abstract

Variable spreading gain (VSG) CDMA allows data terminals to operate at dissimilar
transmission rates. With this technique, the chip rate is common to all users, but the
spreading gains vary. Our work is relevant to the uplink of a single-cell VSG CDMA
system, in which each terminal’s data throughput is weighted differently in calculating
the network throughput. We seek for each active user a power level and transmission rate
which will maximize the network’s aggregate weighted throughput. This paper focuses
on the two-terminal, interference-limited scenario. The development is entirely analytical,
based on optimization theory. One of the principal results is that the favorite terminal
should always operate at the highest data rate. The optimal bit rate of the other terminal
depends on the ratio of the minimum allowable spreading gain to the square root of the
priority coefficient. Only when this ratio is large enough, is it optimal for both terminals
to operate at the highest permissible data rate. In either case, we provide equations whose
solutions lead to the optimal power ratios.

1 Introduction

Modern wireless networks will accommodate simultaneous transceivers operating at very dif-
ferent bit rates. Several technologies have been proposed to accommodate multi-rate traffic in
such networks. Ottosson and Svensson [4] discuss several multi-rate schemes based on Direct
Sequence Code-Division Multiple Access (DS-CDMA). One such scheme is “variable spread-
ing gain” (VSG) CDMA, as described, for example, by I and Sabnani[1]. In a VSG-CDMA
system, the chip rate is constant across terminals, but the spreading gains may be different.
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Each terminal’s spreading (processing) gain is determined as the ratio of the common chip rate
to the terminal’s bit rate.

The model discussed in this paper is relevant to an interference-limited single-cell VSG-
CDMA system in which each data terminal can operate within a range of bit rates, which is
assumed continuous for tractability. We seek an allocation specifying, for each active terminal,
a choice of data rate and power level which will maximize the network weighted throughput.
The weights may reflect different levels of “importance” among the terminals. The traffic is
assumed to be delay-tolerant (“best-effort”).

Similar situations have been considered by the literature, although these models are signif-
icantly different from the one considered herein. Our formulation has much in common with
that of Ulukus and Greenstein [7]. Major differences between ours and their work include (a)
our consideration of users’ priorities, (b) our adoption of a generalized “frame-success” func-
tion (the function yielding the probability that a data packet is received successfully in terms
of the terminal’s received SIR), and (c) the simplifying linearization involved in their solution
procedure. Our work has also many similarities with that of Sung and Wong [6]. They maxi-
mize a measure of channel “capacity” instead of throughput. But their use of a fairly general
“capacity function” makes their work quite relevant to ours. On the other hand, they do not
consider priorities, and, perhaps more significantly, assume that the terminal’s data rates are
fixed exogenous parameters, as opposed to variables to be chosen optimally.

Other related works seek decentralized solutions. Kim, et. al. [2] is noteworthy in that they
assume integer data rates. This assumption makes their model more realistic, but limits con-
siderably the analytical techniques available for a solution. They formulate rate/power control
within a linear model, whose solution can be attained through either of two proposed distributed
algorithms. This model assumes specific received SIR requirements for each considered data
rate.

This paper examines a situation in which one base station receives CDMA signals from
two data terminals. This study provides the core of a more general analysis.

The optimization analysis first seeks an allocation satisfying the first-order necessary op-
timizing conditions (FONOC), in which both spreading gains are strictly greater than their
minimum permitted value. One such allocation is found and described by a closed-form ex-
pression. However, an analysis of the second-order sufficient optimizing conditions reveals
that this allocation is neither a maximizer nor a minimizer, but a “saddle point”. Thus, the
maximization of the network’s weighted throughput necessitates that at least one of the termi-
nals operate at the smallest permissible spreading gain,G0, (which corresponds to the fastest
permitted data rate). However, the saddle point is shown to have the interesting property of
being “balanced”, in the sense that both terminals enjoy the same weighted throughput.

Next, we seek an allocation satisfying the FONOC in which the spreading gain of the
favorite (high priority) terminal is set to the smallest permitted value,G0 (i.e. the favorite
terminal operates at the fastest permitted data rate). The analysis shows that in order for such
allocation to exist, an equation of the formx2 f ′(x)/ f ′(γ0) = G2

0/β must have a solution. In
this equation,f is the frame-success function mentioned above,β ≥ 1 is the weight of the
favorite terminal’s throughput, andγ0 is a specific SIR value clearly identified by the analysis.
But the left hand side of this equation is bounded, and entirely determined by the physical layer
through the frame-success function,f . Thus, if the ratioG2

0/β exceeds this channel-determined
bound, the concerned equation has no solutions. Therefore, whenG0/

√
β is “large enough”,

the network maximizer involves both terminals operating at the fastest permissible data rate.
The “greedy” allocation in which both terminals are set to operate at the highest permissible

data rate, with the power ratios determined through FONOC, is also investigated in the paper. A
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detailed, closed-form solution is given for this situation, in the special symmetric case in which
both terminals are equally “important”. It is shown that this “greedy” allocation is particularly
treacherous, since it can lead to either a maximum or a minimum, depending upon whether the
minimum permissible spreading gain,G0, exceeds a specific value determined by the physical
layer through the frame-success function.

Below, we first build a relatively simple analytical model relevant to the uplink data trans-
mission in one VSG-CDMA cell, and specify the general characteristics of the “frame-success”
function giving the probability that a data packet is received successfully in terms of the ter-
minal’s received SIR. Because this function is at the core of the analysis, it is desirable to
impose as few restrictions as reasonable on it. Essentially, we just assume that the graph of this
function is a smooth S-shaped curve. This characterization should accommodate a wide vari-
ety of coding and modulation schemes. Subsequently, we undertake the optimization problem
of determining a rate and power choice for each of two terminals so that network’s weighted
throughput is maximized. Finally, we provide further comments interpreting these results, and
mention briefly relevant concurrent and future work.

2 Throughput Optimization

2.1 Problem Formulation

We will discuss a two-terminal situation, in which, for practical purposes, the noise power is
negligible (the system is interference limited). We seek to solve:

Maximize
f (G1α1)

G1
+

β f (G2α2)
G2

(1)

subject toα1α2 = 1 ; G1 ≥G0 ; G2 ≥G0

In this simple model,

1. Gi = RC/Ri , i ∈ {1,2} is the spreading gain of terminali; i.e., the ratio of to the channel’s
chip rate ,RC to its data rateRi (bits per second).G0 ≥ 1 is the minimum permitted
spreading gain (determined by the maximum permissible transmission rate).

2. αi is the carrier-to-interference ratio (CIR) of the signal from terminali received at the
base station.αi is defined as,

αi :=
Pihi

∑N
j=1
j 6=i

Pjh j +σ2
=

Qi

∑N
j=1
j 6=i

Q j +σ2

with N the number of active terminals,Pi the transmission power of terminali, hi its
“gain” (path loss) coefficient,hiPi := Qi its received power, andσ2 a representative of
the average noise power. WithN = 2, assuming thatσ2 = 0 leads immediately to the
constraintα1α2 = 1 (α1 := Q1/Q2 := 1/α2)

3. The productGiαi , denoted asγi , is terminali’s signal to interference (SIR) ratio.

4. β ≥ 1 is a priority/importance coefficient
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5. We assume that there is a real-valued “frame-success” function which gives the proba-
bility of the correct reception of a packet in terms of the transmitter’s received signal-to-
interference ratio. We assume that this function is such thatf (x) := fS(x)− fS(0) has the
general properties of the generalized “sigmoidal” function (generic S-curve) discussed
in [5], and that it has a continuous second derivative. The difference betweenfS and f is
generally negligible for practical purposes. Nevertheless, certain expressions involving
f technically behave better.

2.2 Augmented objective function

In order to obtain the first order necessary optimizing conditions (FONOC) for an extremum,
the following “extended” objective function is constructed:

φ(G1,G2,α1,α2) =
f (G1α1)

G1
+

β f (G2α2)
G2

+λ(α1α2−1)+µ1(G0−G1)+µ2(G0−G2) (2)

2.3 General First-Order Necessary Optimizing Conditions (FONOC)

The general FONOC can be expressed in vector form, withγi = Giαi , as:
(γ1 f ′(γ1)− f (γ1))/G2

1−µ1

β(γ2 f ′(γ2)− f (γ2))/G2
2−µ2

f ′(γ1)+λα2

β f ′(γ2)+λα1

 =


0
0
0
0

 (3)

with


α1α2 = 1

µ1(G0−G1) = 0
µ2(G0−G2) = 0

(4)

In order to check the second-order sufficient conditions one needs the Hessian matrix of
second partial derivatives of our augmented objective function, denoted asφxx.

φxx =


ψ(γ1) 0 α1 f ′′ (γ1) 0

0 βψ(γ2) 0 βα2 f ′′ (γ2)
α1 f ′′ (γ1) 0 G1 f ′′ (γ1) λ

0 βα2 f ′′ (γ2) λ βG2 f ′′ (γ2)

 (5)

Where, for notational convenience, we define :

ψ(γi) =
2

G3
i

[
1
2

γ2
i f ′′ (γi)− γi f ′ (γi)+ f (γi)

]
(6)

2.4 Interior (‘balanced’) solution

First we shall seek an interior stationary point. That is, we presume that a solution to the first-
order conditions exist in which bothG1 andG2 are greater thanG0, which requireµ1 = µ2 = 0
(see equations (4)). Then, we proceed to check whether a solution to equations (3) and (4)
consistent with these hypotheses actually exists.
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2.4.1 Solving the FONOC

Working with the top 2 rows of the matrix equation (3), we obtain:

γ1 f ′(γ1) = f (γ1) and γ2 f ′(γ2) = f (γ2)

These equations have the form:

x f ′ (x) = f (x) (7)

Rodriguez[5] shows that for the class of sigmoidal functionsf being considered, there is a
unique positive valueγ0 which satisfies equation (7). This value can be graphically identified
in the attached figure as the abscissa of the point where the graph off is tangent to a ray
emanating from the origin; that is, tangent to the straight liney = f ′(γ0)x.

Therefore, if any values of the variables of interest satisfy, under the stated hypotheses,
equations (3) and (4) , they must be such that:

G∗
1α∗1 = G∗

2α∗2 = γ0 (8)

It is also established by working with the next two rows of the matrix equation (3) that:

−λ =
f ′(G∗

1α∗1)
α∗2

=
β f ′(G∗

2α∗2)
α∗1

(9)

Now, substituting equation (8) into equation (9), we obtain :

f ′(γ0)
α∗2

=
β f ′(γ0)

α∗1
⇒

α∗1
α∗2

= β ⇒ α∗2 =
1√
β

=
1

α∗1
We now have found a complete “interior” solution to the first-order optimizing conditions:

α∗1 =
1

α∗2
=

√
β ; G∗

1 =
γ0

α∗1
=

γ0√
β

; G∗
2 =

γ0

α∗2
=

√
βγ0 (10)

Notice that, in order for these values to be consistent with our original hypotheses,G∗
i > G0;

i.e.,G0
√

β < γ0.
Substituting the above values into the objective function yields

TB =
f (γ0)
G∗

1
+

β f (γ0)
G∗

2
=

f (γ0)
√

β
γ0

+
β f (γ0)
γ0

√
β

= 2
f (γ0)

√
β

γ0
(11)

Notice that this is a closed form solution. If the functionf is known,γ0can be easily ob-
tained graphically (see attached figure) or equation(7) can be solved numerically. For instance,
under suitable assumptions, the frame-success function corresponding to non-coherent FSK
with packet size M=80 is:

f (x) =
[
1− 1

2
exp

(
−x

2

)]80

(12)

In this case,γ0 = 10.75 andTB reduces to about 0.15
√

β .
This operating point has an interesting property: it is ‘balanced’ in the sense that both users

experience the same weighted throughput:f (γ0)
√

β/γ0. The “fairness” of this operating point
may be a desirable feature in certain situations.
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2.4.2 Second-order sufficient conditions

The previously found allocation does satisfy the first-order necessary conditions for an opti-
mizer (it is a “stationary” point). But we do not yet know whether it is actually a maximizer.
As it turns out, it is not. It can be shown that it is a saddle point.

The optimality of this stationary point depends upon the matrix of second partial derivatives
(Hessian matrix) ofφ, our augmented objective function, which we denote asφxx. Essentially,
at a point satisfying the FONOC, for any vector~h along a feasible direction, the triple product
~hT[φxx]~h is positive if the stationary point corresponds to a local minimum, and this product is
negative if the stationary point corresponds to a local maximum. If neither of these conditions
hold, then the point is a “saddle point”.

A feasible direction is one that is tangent to the curve representing the constraint relation-
ship. Hence, if we denote our constraint curve asb(G1,G2,α1,α2) := α1α2−1 = 0, we only
need to consider vectors~h satisfying∇b•~h = 0 , that is, vectors normal to the gradient of the
constraint curve. For us, at the interior stationary point,

∇b =


0
0

α∗2
α∗1

 =


0
0

1/
√

β√
β

 ∝


0
0
1
β


Then, it is easily verified that any vector~h of the form

[
a1 a2 βa3 −a3

]T
, where

the ai ’s are non-negative real numbers, satisfies∇b •~h = 0 . It will prove convenient to ex-
press such vector as the product of a “transformation” matrix,M , by an arbitrary vector~a
.=

[
a1 a2 a3

]T
. It is trivial to verify that

M =


1 0 0
0 1 0
0 0 β
0 0 −1


is such that~h = M ·~a satisfies the desired condition.

The second-order conditions for the stationary point under consideration can be expressed
in terms of the matrixMTφxxM . This matrix is positive definiteif the stationary point corre-
sponds to a local minimum, and is negative definiteif the stationary point corresponds to a
local maximum. This matrix is indefiniteif this point is a “saddle point”. A square matrix is
positive definite if all its principal minor determinants are positive.

φxx is given in equation (5) .
But at our stationary point, (see equation (10)),φxx becomes, withr0 := f ′(γ0)/ f ′′(γ0):

φxx =


β/γ0 0 1 0

0 1/γ0β 0 1
1 0 γ0/β −r0

0 1 −r0 βγ0

√
β f ′′ (γ0)

After some algebra, we obtain:

MT×φxx×M√
β f ′′ (γ0)

=


β
γ0

0 β
0 1

γ0β −1
β −1 2β(γ0 + r0)

 (13)
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The first principal minor determinant is simply the first element of the matrix, which clearly
is a positive number. The second principal minor determinant is simply 1/γ2

0, which is also
clearly positive. However, after some algebra we obtain that the determinant of the whole
matrix is 2βr0/γ2

0 = 2β f ′(γ0)/γ2
0 f ′′(γ0).

But this expression is negative, because the first derivative off is positive everywhere,
and it can be shown (see [5]) that, for the class of functionsf being considered,f ′′(γ0) is
negative. Hence, we have the first two principal minor determinants positive, but the third one
negative. The concerned matrix is indefinite. Therefore, our interior stationary point is neither
a minimizer nor a maximizer. It is a saddle point.

2.5 Asymmetric-rates boundary solution

In the preceding section, we identified a solution to the FONOC lying in the interior of the
feasible region (both spreading gains are greater than the minimum permissible value). This
allocation was shown to be a non-maximizer, which suggests that the maximizer be sought
over the “boundary” of the feasible region. An intuitively appealing boundary solution is that
in which the “favorite” terminal transmits at the highest allowable bit rate, which means its
spreading gain isG0 (µ2 6= 0), whileG1 is presumed inside its allowable range (µ1 = 0).

2.5.1 Solving the FONOC

Working with the first row of equation (3), and keeping in mind that we have presumed that
µ1 = 0, we obtainG1α1 = γ0, with γ0 as defined by equation (7), and shown in the attached
figure.

Working with the last two rows of equation (3) we establish that:

−λ =
f ′(G1α1)

α2
=

β f ′(G0α2)
α1

which can be re-written as follows:

G2
0 f ′(γ0)
G0α2

= β f ′(G0α2)G0α2 ⇒ x2 f ′(x)
f ′(γ0)

=
G2

0

β
(14)

with x := G0α2. Hence, the stationary value ofα2 is obtained by solving an equation of the
form x2 f ′(x) = K0, with K0 = f ′(γ0)G2

0/β , a system-dependent constant.
For the class of functions being considered,x2 f ′(x) is a “bell-shaped” function defined over

the non-negative side of the real line, as shown by the attached figure, and so is the function
x2 f ′(x)/ f ′(γ0), since f ′(γ0) is a positive constant.

This implies that, ifG2
0/β is too large, it may surpass the “peak” of the function on the left

hand side of equation (14) . Thus, this equation may havenosolutions.
On the other hand, ifG2

0/β is sufficiently small, two values ofx will satisfy equation(14).
The larger value, to the right of “the peak”, is chosen as a prospective maximizer. Letγ00 be
the largest value, if any, satisfying:

γ2
00 f ′(γ00)
f ′(γ0)

=
G2

0

β
(15)

In terms ofγ00 we can identify a complete solution. By definition,γ00 = G0α2, which
implies thatα∗2 = γ00/G0 satisfies the FONOC, and obviously so doesα∗1 = 1/α∗2 = G0/γ00.
And since the FONOC requires thatG∗

1α∗1 = γ0, thenG∗
1 can be obtained asγ0/α∗1.
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Figure 1: A particularf (x) , x f ′(x), andscaledversions off ′(x), andx2 f ′(x).
γ0 satisfiesx f ′(x) = f (x)

Hence, we have arrived at the “asymmetric-rates” boundary allocation given by:
G∗

1
G∗

2
α∗1
α∗2

 =


γ0γ00/G0

G0

G0/γ00

γ00/G0

 (16)

Notice that, for consistency with our hypothesis,G∗
1must be greater thanG0, which requires

thatG0 <
√γ0γ00.

Substituting these values into the objective function yields

TAR =
f (γ0)
G∗

1
+

β f (γ00)
G∗

2
=

f (γ0)G0

γ00γ0
+

β f (γ00)
G0

For instance, let us consider the frame success function introduced previously as equation (12).
We already know that for this function,γ0 = 10.75, andf (γ0) = 0.83.
WhenG0 = 2 andβ = 2, bothx = 22.1 andx = 3.97 satisfy the equationx2 f ′(x) = K0.
Hence,γ00 = 22.1. This givesTAR = 1.01. By comparison, the ‘balanced’ solution only

yieldsTB = 0.15
√

2 = 0.21, much less.

2.5.2 Second-order sufficient conditions

By applying a procedure similar to that of section (2.4.2) it can be verified that the allocation
given by equation (16), if feasible,is a maximizer.

2.6 ‘Greedy’ allocation

In the preceding section, we considered the “asymmetric-rates” boundary solution, in which
the “favorite” terminal operates at the smallest permissible spreading gain (fastest data rate),
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while the spreading gain of the other terminal, as well as the power ratios, are determined by
the analysis. It was observed that pre-setting the favorite terminal to operate at the highest
permitted data rate will not lead to a point satisfying the first-order optimizing conditions if
G2

0/β is “too large”, and this allocation could be infeasible ifG0 >
√γ0γ00. In this section we

consider the ‘greedy’ situation, in which both terminals operate at the highest permissible data
rate.

2.6.1 Solving the FONOC

Working with the last two rows of equation (3) we establish that:

−λ =
f ′(γ1)

γ2
=

β f ′(γ2)
γ1

⇒ γ1 f ′(γ1) = βγ2 f ′(γ2) (17)

with the constraintγ1γ2 = G2
0.

2.6.2 Second-order sufficient conditions

Proceeding as in section(2.4.2), we determine that a point satisfying equation (17) is a maxi-
mizer wheneverγ1h′(γ1)+βγ2h′(γ2) < 0, whereh(x) := x f ′(x) so thath′(x) = f ′(x)+x f ′′(x).

The symmetric case (β = 1).
To gain insight into the general case, we consider the special case in whichβ=1 (both

terminals are equally “important”). In this case, it is a simple matter to verify thatγ1 = γ2 = G0

(α1 = α2 = 1) satisfies the FONOC. And the expression whose sign needs to be ascertained
becomes 2G0h′(G0). Hence,γ1 = γ2 = G0 (α1 = α2 = 1) is a maximizer, wheneverh′(G0) < 0

This inequality is satisfied wheneverG0 is to the right of the point ˆx whereh(x) = x f ′(x)
reaches its maximum. This is so, because for the class of functions we are considering, the
functionx f ′(x) is a “bell-shaped” “single-peaked” curve extending between 0 and infinity (see
attached figure). Hence,h′(x) < 0 for any pointx, such thatx > x̂.

Accordingly, for β = 1, the pointγ1 = γ2 = G0 (α1 = α2 = 1) is a minimizer whenever
G0 < x̂, and is a maximizer forG0 > x̂.

As an example, let us consider once again the frame-success function previously introduced
as equation (12). In this case,h(x) = x f ′(x) reaches its maximum at ˆx = 7.95. Thus, in this
particular case, forβ = 1, γ1 = γ2 = G0 (α1 = α2 = 1) is a minimizer forG0 < 7.95 but is a
maximizer forG0 > 7.95.

3 Discussion

We have derived the optimum power levels and data rates for two terminals transmitting to one
base station, in a scenario relevant to variable spreading gain CDMA. The objective function is
the weighted network throughput, where the weights may indicate relative levels of importance
(priorities) of the two terminals. The analysis leads to three power and rate assignments: a
balanced assignment with both terminals operating within the range of permitted bit rates and
achieving equal weighted throughput; an “unfair” assignment in which the favorite terminal
operates at maximum bit rate, while the other terminal operates within the set of permitted
rates; and a greedy assignment in which both terminals operate at maximal bit rate.

The balanced assignment is always suboptimal, which suggests that “fairness” (in the sense
of equal weighted throughput) comes at the expense of performance. It is always optimal for
the favorite terminal to operate at the maximum permissible data rate (data “speed limit”).
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The network should admit both terminals at this maximal rate (“greedy” assignment optimal)
whenG0, the ratio of chip rate to the maximum bit rate, is greater than a “scaled” threshold,
which is entirely determined by the details of the physical layer as embodied in the frame
success function,f . The threshold’s scaling factor is

√
β, whereβ is the weight reflecting

(possibly) the level of importance of the favorite terminal. This fact indicates that the chip rate
necessary to optimally admit the low-priority terminal at maximum bit rate increases as the
favorite terminal grows in importance. Alternatively, the data “speed limit” under which it is
optimal to admit both terminals at maximum bit ratedecreaseswhen the favorite terminal’s
importance grows. That is, the greater the importance of the favorite terminal, the slower the
data ”speed limit” which makes optimal for both terminals to operate at “full (data) speed”.

Relevant concurrent or future work by the authors includes consideration of non-negligible
noise at the base station, and of an arbitrary number of terminals, as well as application of
game theory to the derivation of decentralized control algorithms.
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