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Abstract— Relevant to the uplink of a VSG-CDMA system, a
technique part of 3G standards, this work investigates power
and data rate allocations that maximize the network weighted
throughput. Each terminal has one of 2 possible weights, which
admit various practical interpretations. Earlier works of ours
tell us that at least one terminal should operate at the highest
available data rate, and that terminals not operating at this rate
should operate at the same signal-to-interference ratio (SIR). We
have also learned that when only two terminals of dissimilar
weights operate at maximal data rate, the optimal SIR values
for these terminals is obtained as an intersection point between
an “X-shaped” graph arising from optimality conditions, and a
“U-shaped” graph arising from the feasibility condition on power
ratios. In the present work, we introduce a general procedure
to seek an allocation that is a global optimizer. Our analysis is
based on classical optimization theory, and should accommodate
a wide variety of physical layer configurations.

I. INTRODUCTION

Modern wireless networks will accommodate simultaneous
transceivers operating at very different bit rates. Variable
spreading gain (VSG) CDMA is one of the technologies
chosen to accommodate multi-rate traffic in such networks[2].
In a VSG-CDMA system, each terminal’s spreading gain is
the ratio of the common chip rate to the terminal’s bit rate.
Our model is relevant to an interference-limited single-cell
VSG-CDMA system in which each data terminal can operate
within a range of bit rates, assumed continuous for tractability.
We seek allocations of data rate and power levels which will
maximize the cell weighted throughput. There are two possible
weights, which admit various interpretations, including levels
of importance or priority, “utilities”, or monetary prices. We
assume the traffic to be delay-tolerant.

In previous works we have learned that in order for an
allocation to be a candidate for maximizer, it must be such
that (i) at least one terminal operates at the highest available
data rate, and (ii) terminals not operating at this rate should
experience a specific signal-to-interference ratio (SIR), γ0 [7],
[8]. However, many such allocations are possible, depending
upon the number of terminals operating at the highest available
data rate. A key question we need to answer is how many
terminals should operate at the highest available data rate

(“favored terminals”). Once this question is answered, we
also need to specify the optimal CIR for these terminals, as
well as the optimal data rate for the other (“non-favored”)
terminals (which will be operating at the preferred SIR value,
γ0). Below, we provide an analytical procedure to answer these
questions.

Reference [1] represents a related strand of work of ours,
in which noise (out of cell interference) is assumed non-
negligible, the data rates are fixed and identical, and the
optimal number of terminals is sought, along with the power
allocation. Other authors have considered situations relevant to
ours. Our present formulation has much in common with that
in [10]. Major differences between ours and their work include
(a) our consideration of weights (b) our adoption of a “gener-
alized” frame-success function (discussed below), and (c) the
simplifying linearization involved in their solution procedure.
Reference [3] also seeks data rates and power allocation,
and consider a “sigmoidal-like” frame-success function; but
it focuses on the downlink, does not consider weights, and
provides a sub-optimal algorithmic solution based on pricing.
Reference [9], maximizes a fairly general “capacity function”;
but does not consider weights, and assumes that the data rates
are different but fixed. Other related works seek decentralized
solutions.

At the core of our analysis is a frame-success function
(FSF) that gives the probability that a data packet is re-
ceived successfully in terms of the terminal’s received signal-
to-interference ratio (SIR). This function depends on many
physical attributes of the system, such as the modulation
technique, the forward error detection scheme, the nature of
the channel, and properties of the receiver. We do not impose
any particular algebraic functional form (“equation”) on the
FSF. Rather, we assume that all that is known about this
function is that its graph is a smooth S-shaped curve, as
displayed in fig. 1, and base our analysis on properties derived
from this shape. Hence, our analysis should apply to many
physical layer configurations of practical interest. Reference
[4] discusses further this modeling approach.

Below, a relatively simple optimization model relevant to



uplink data transmission in one VSG-CDMA cell is built.
We present the first-order optimizing conditions for the dual
class situation of interest, and focus on a specific scenario
in which a few equally “important” terminals share a cell
with many “ordinary” terminals. We presume that the system
can accommodate all the important terminals at the highest
available data rate. But it is not clear how many, if any, of the
ordinary terminals should be set to operate at this high rate, in
order to maximize the cell’s weighted throughput. A general
solution procedure for this scenario is given. Finally, we
discuss our results, and comment on future relevant research.

II. GENERAL FORMULATION

We seek to solve:

Maximize
N∑

i=1

βiTi(Gi, αi) (1)

subject to
N∑

i=1

αi

1 + αi
= 1 (2)

Gi ≥ G0 i ∈ {1, · · · , N} (3)

In this simple model,

1) N is the number of terminals.
2) The throughput of terminal i is defined as RCTi(Gi, αi),

with

Ti(Gi, αi) :=
f(Giαi)

Gi
(4)

3) Gi = RC/Ri, i ∈ {1, . . . , N} is the spreading gain
of terminal i; i.e., the ratio of the channel’s chip rate ,
RC to the terminal’s data transmission rate Ri (bits per
second). G0 ≥ 1 is the lowest available spreading gain
(determined by the highest available data rate).

4) αi is the carrier-to-interference ratio (CIR) of the signal
from terminal i received at the base station. αi is defined
as,

αi :=
Pihi∑N

j=1
j �=i

Pjhj + σ2
=

Qi∑N
j=1
j �=i

Qj + σ2
(5)

with Pi the transmission power of terminal i, hi its the
path gain coefficient, hiPi := Qi its received power,
and σ2 a representative of the average noise power and,
possibly, out-of-cell interference. It can be shown that,
with σ2 = 0, the CIR’s must be such that

∑
αi/(1 +

αi) = 1 (constraint (2)) to ensure feasibility [5].
5) The product Giαi , denoted as γi , is terminal i’s signal

to interference (SIR) ratio.
6) βi ≥ 1 is a weight, which admits various practical

interpretations. With no loss of generality, we can always
set 1 = β1 ≤ · · · ≤ βN . In this work, we consider
the special case in which 1 = β1 = · · · = βN1 and
β = βN1+1 = · · · = βN1+N2 with N1 + N2 = N .
Thus, there are N1 “light weight” terminals and N2

“important” ones. However, in the development we often

leave the weights expressed as β1, · · · , βN to show the
patterns.

7) We assume that there is a frame-success function (FSF)
which gives the probability of the correct reception of
a data packet in terms of the received SIR. We assume
that this function is such that f(x) := fS(x) − fS(0)
has the general properties of the generalized “S-curve”
discussed in [6] (see fig. (1)), and that it has a continuous
second derivative. Because fS(0) is very small, the dif-
ference between fS and f is generally negligible. Nev-
ertheless, this correction is made for technical reasons,
on the basis of [4]. No actual function is used, except to
provide numerical examples. Our analysis should apply
to a wide variety of physical layer configurations, as long
as they give rise to an FSF with an S-shaped graph.

Constraint (2) can be written as
N∑

i=1

1
1 + αi

= N − 1 (6)

In the development below, an asterisk used as a superscript
on a variable denotes a specific value of the variable which
satisfies certain optimality condition. We refer to terminals
operating at maximal data rate as “favored” or “favorite”, and
call those terminals in the high-weight class “important”, as
opposed to “ordinary”.

III. FIRST-ORDER NECESSARY OPTIMIZING CONDITIONS

In [7], [8] we discuss the general technical procedure to
solve a problem such as this. This procedure leads to the fol-
lowing first-order necessary optimizing conditions (FONOC),
with γi = Giαi



β1∂T1(G1, α1)/∂G1 − µ1

...
βN∂TN (GN , αN )/∂GN − µN

β1f
′(γ1) + λ(1 + α1)−2

...
βNf ′(γN ) + λ(1 + αN )−2




=




0
...
0
0
...
0




(7)

with




∑N
i=1(1 + αi)−1 = N − 1

µ1(G0 − G1) = 0
...

µN (G0 − GN ) = 0

(8)

Notice that
∂Ti(Gi, αi)

∂Gi
=

γif
′(γi) − f(γi)

G2
i

(9)

IV. SOLVING FONOC

A. Interior solution

It is natural to start by seeking an “interior” solution to
FONOC, in which each Gi is greater than G0, which requires
µi = 0, (see equations (8)). In [7] we show that, if G0 is
not “too large”, one such solution exists and can be described
by a closed-form expression. Unfortunately, this allocation is
always a “saddle point” (neither a maximizer nor a minimizer).



B. Single-Favorite Boundary Solution (SFBS)

The fact that the interior solution to FONOC is neither a
maximizer, nor a minimizer indicates that the true maximizer
is a solution in which one or more terminals operate at the
lowest available spreading gain. In [7], we start by seeking
an allocation satisfying FONOC in which only the spreading
gain of the “most important” terminal is set at the lowest
available value, G0 (i.e. this terminal operates at the highest
available data rate), with other terminals’ spreading gains to be
determined by the analysis. Our analysis shows that in order
for this single-favorite solution to exist, the SIR of the “non-
favored” terminals should be obtained by solving an equation
of the general form:

xf ′ (x) = f (x) (10)

Reference [6] shows that if f is an S-curve, there is a unique
positive value γ0 which satisfies eq. (10). This value can be
graphically identified in fig. 1 as the abscissa of the point
where the graph of f is tangent to a ray emanating from the
origin.

The SIR of the favorite terminal should be a solution to the
equation

(C1x/G0 + D1)2f ′(x)/f ′(γ0) =
1

βN
(11)

with

C1 =
N − 1
BN−1

; D1 =
N − 2
BN−1

(12)

BN−1 :=
∑N−1

j=1

√
βj . In the special case in which there

is only one important terminal, βN = β, and βj = 1 for
j = 1, ..., N − 1. Thus, BN−1 := N − 1, C1 = 1, and
D1 = (N − 2)/(N − 1).

But the graph of the function (C1x/G0+D1)2f ′(x)/f ′(γ0)
has the same bell-shape of that of the function x2f ′(x) in fig.
1. Thus, the sought solution may not exist, because if G0 is
sufficiently large, the peak of this function may fall below
1/β, unless β is also “very large”.

Otherwise, two values of x on either side of the peak of
the concerned function, say x∗

1 ≤ x∗
2, will satisfy equation

(11). It is necessary for a maximum that µN ≤ 0, (µN is
the Lagrange multiplier associated with the constraint G0 −
GN ≤ 0). After some analysis, this requirement implies that
the chosen solution of eq. (11) must be greater than γ0. This
will generally rule out the smallest of the two solutions.

With x∗ denoting the chosen of the two solutions to eq.
(11), the FONOC-solving CIR for terminals 1 through N-1 is
obtained from:

α∗
i =

1√
βi

BN−1

N − 1 − (1 + x∗/G0)
−1 − 1 (13)

Since non-favored terminals operate at the SIR of γ0, the
matching spreading gain for a given α∗

i is G∗
i = γ0/α∗

i . In
order for x∗ to be useful, it must be such that γ0/α∗

i > G0,
the lowest available spreading gain.
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Fig. 1. A particular f(x) , xf ′(x), and scaled versions of f ′(x), and
x2f ′(x). γ0 satisfies xf ′(x) = f(x)

C. A Multi-Favorite Boundary Solution (MFBS)

The single favorite boundary solution to FONOC may not
exist, and even if it does exist, it may not lead to a global
maximizer. We now investigate a more general solution to
FONOC in which all the important terminals, N2, and several
ordinary terminals, say n1 ≤ N1, operate at maximal data
rate. Recall that βi = 1 for i = 1 . . . N1, and βi = β > 1
otherwise.

1) General structure of the solution: There are N1 − n1

non-favored terminals. Thus, µi = 0 for 1 ≤ i ≤ N1 − n1

(see equations (8)). Working with the first N1−n1rows of the
vector equation (7), we obtain, for 1 ≤ i , j ≤ N1 − n1,

γif
′(γi) − f(γi) = 0 → γ∗

i ≡ G∗
i α

∗
i = γ0 (14)

with γ0 defined as the unique positive solution to eq. (10).
We also establish by working with the bottom half of the

vector equation (7) that:

−λ = f ′(G∗
i α

∗
i ) (1 + α∗

i )
2 for 1 ≤ i ≤ N1 − n1 (15)

and

−λ = f ′(G0α
∗
i ) (1 + α∗

i )
2 for N1 − n1 < i ≤ N1 (16)

and

−λ = βf ′(G0α
∗
i ) (1 + α∗

i )
2 for N − N2 ≤ i ≤ N (17)

Combining equations (14) and (15), we obtain

α∗
i = α∗

1 for 1 ≤ i ≤ N1 − n1 (18)

For N1 − n1 < i ≤ N1, eq. (16) leads to n1 equations of the
form

f ′(G0α
∗
i ) (1 + α∗

i )
2 = f ′(G0α

∗
j )

(
1 + α∗

j

)2

Evidently, this equation is satisfied with

α∗
i = α∗

j = y/G0 for N1 − n1 < i , j ≤ N1 (19)

A similar analysis of eq. (17) leads to

α∗
i = α∗

j = x/G0 for N − n2 < i , j ≤ N (20)



Now, the constraint relation (6) (
∑

i(1 + αi)−1 = N − 1)
becomes an equation with only three unknowns, α1, x and y.
Substituting eqs. (18, 19 and 20) into (6) yields

N1 − n1

1 + α1
+

n1

1 + y
G0

+
N2

1 + x
G0

= N − 1 (21)

Equations (15, 16, and 17) imply that

f ′(y)
(

1 +
y

G0

)2

= βf ′(x)
(

1 +
x

G0

)2

(22)

βf ′(x)
(

1 +
x

G0

)2

= f ′(γ0) (1 + α∗
1)

2 (23)

Equation (23) provides a closed-form expression for α∗
1 in

terms of x:

α∗
1 =

(
1 +

x

G0

) √
βf ′(x)
f ′(γ0)

− 1 (24)

The function on the right-hand side of eq. (24) takes on values
as low as −1, and yields a bell-shaped graph (such as that
shown at the top of fig. 2). But, physically, α1 cannot be
negative. Thus, the existence of a MFBS in which all the
ordinary terminals are active necessitates that the SIR of the
favorite terminal be held within certain interval. This range
expands as β grows, but shrinks as G0 increases. Furthermore,
α1 cannot be too large, either. This is so because, in order to
satisfy FONOC, the non-favored terminals must operate with
SIR equal to γ0. Thus the spreading gain for these terminals
must equal γ0/α1. But if α1 is large, this ratio may be smaller
than G0, which is the smallest allowable spreading gain. That
is, it is necessary that 0 < α1 ≤ γ0/G0. This further constraint
the values of x that can be chosen.

Within the appropriate range, eq. (24) allows us to write eq.
(21) as :

n1

1 + y
G0

+
N1 − n1(

1 + x
G0

) √
βf ′(x)
f ′(γ0)

+
N2

1 + x
G0

= N − 1 (25)

Equations (22) and (25) form a system of two non-linear
equations in two unknowns which is, in principle, solvable.
Once we know the appropriate values of x∗ and y∗, we can
find α∗

1, the optimal CIR for terminals 1 . . . N − n1, from eq.
(24), and the corresponding spreading gain, from eq. (14), as
γ0/α∗

1. Thus, from x∗ and y∗ we can obtain a complete multi-
favorite solution to FONOC. Below, we describe this solution,
and comment on its optimality.

2) Discussion of the MFBS: The caption of figure 2 sum-
marizes much of what can be said about the MFBS. Further
insights are given in section V-B through numerical examples.

Generally, there are four intersection points, one in each of
the “legs” of the concerned X-curve. It is clear that, among
the four intersection points, the NE one yields the largest
throughput for the favorite terminals, since both x (the SIR
of the important terminals) and y (the SIR of the favored
non-important terminals) are as high as possible. But if the
number of non-favored terminals, N1 − n1, is larger than the
number of favorites, N2+n1, it is in principle possible that the
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Fig. 2. With the SIR of the favored terminals denoted as x (important) and y
(ordinary), FONOC requires that βh(x) = h(y) (eq. (22)). Any of the pairs
(x1, y1), (x2, y2), (x1, y2), or (x2, y1) (top) satisfies this equation, but may
not be feasible. We plot all such points, which reveals an “X-shaped” graph
(NE, NW, SW and SE are directional labels). On the same axes, we plot the
U-shaped graph arising from the constraint equation (25). The 4 intersection
points between the U-shaped and X-shaped graphs for the given (G0,β) pair
lead to feasible solutions to FONOC, provided that the resulting CIR and
data rate for the non-favored terminals are also feasible. When all terminals
operate at the highest data rate, a hyperbolic curve (from eq. (26)) replaces
the U curve. If G0 is low enough, the hyperbola may only intersect the SW
leg of the X-curve, which leads to a minimum.

NE intersection point not lead to the largest overall weighted
throughput. On the other hand, by considering the signs of
the Lagrange multipliers associated with the spreading gains
of the favored terminals, it is determined that both x and y
must be greater than γ0 for a maximum. This will typically
rule out the intersection points falling outside the NE “leg” of
the X.

Moreover, when we make n1 = N1 so that all terminals,
whether important or not, operate at maximal data rate, then
the U-curve is replaced by a hyperbolic “L-curve”, as dis-
played in fig. 2. To see this more clearly, observe that when
n1 = N1, we can solve eq. (25) for y in terms of x, obtaining:

y

G0
=

N1

N1 + N2 − 1 − N2
1+x/G0

− 1 (26)

For x = 0, y = G0/(N1 − 1); and as x → ∞, y →
−G0(N2−1)/(N1+N2−1).Thus, when all terminals operate
at maximal data rate, if N2 > 1 (several “heavy-weight”
terminals), there is an SIR value x beyond which y would
have to be negative in order to satisfy the constraint on the
power ratios, eq. (6). That is, the “L-curve” falls below zero
for x sufficiently large. Hence, in this case, x cannot exceed
G0/(N2 − 1). Furthermore, for low G0, the maximum value
of y, which is G0/(N1 − 1) could be so low, that the L-curve
may intersect only the SW leg of the X-curve, in which case,
both x and y are “low”, and this would lead to a minimum, not
a maximum. The message, in this case, is that there are too



many “favored” terminals (those operating at the highest data
rate); some need to be downgraded to “non-favored”. On the
other hand, with a large enough G0, the hyperbola intersects
the “Northern legs” of the X. In this case, a maximum results.
Thus, when G0 is large enough, all terminals should operate
at the highest available data rate.

V. FINDING THE GLOBAL MAXIMIZER

A. Solution procedure

In discussing the procedure, for expositional convenience
we assume that there is only one important terminal (N2 = 1).
A key variable to be determined is the number of “favored”
terminals (those operating at highest data rate). At least the
important terminal must be in this group.

• Set n1 = 0 (Single-favorite). Find, if possible, the 2
positive solutions to eq. (11), say x∗

1 and x∗
2 (if no such

values exist, proceed to the next item). Either value can
be a FONOC-solving SIR for the favorite terminal, and
each leads to a complete allocation, but it is necessary that
the chosen one be greater than γ0 (section IV-B). For any
of these values that is greater than γ0, through eq. (13)
obtain a corresponding α, the FONOC-solving CIR for
the ordinary terminals, whose matching spreading gain
is γ0/α. If γ0/α > G0, a complete feasible solution to
FONOC has been found, and the corresponding weighted
throughput can be calculated. This value may or may not
be the global optimum. Set n1 = 1 and proceed to find
a dual-favorite solution.

• For 1 ≤ n1 < N1 (multifavorite solution) proceed as
follows. Find the solutions (up to four) to the system of
equations formed by eq. (22) and eq. (25). This is the
equivalent of finding the four intersections between an
X-shaped and a U-shaped graph (fig. 2). But not all of
these intersections are useful. First, min{x, y} ≥ γ0 for
a maximum. Also, if the x value is outside certain range,
the FONOC-solving CIR of the non-favored terminals,
α, may be negative, or its matching spreading gain may
be less than G0. Each of the useful intersections deter-
mine a complete solution to FONOC. The SIRs of the
favored terminals are x (important) and y (ordinary). The
FONOC-solving CIR for the non-favored terminals can
be found from eq. (24), and the matching spreading gain
is γ0/α. The corresponding weighted network throughput
can then be calculated for each feasible solution. If the
U curve is “too wide”, meaning that x would make α
negative, proceed to the next item, below. Otherwise,
increment n1 and repeat this complete item (draw another
U curve for the new n1), until n1 = N1.

• For n1 = N1 (all terminals, important or not, operate
at the highest data rate), find the solution to the system
of equations formed by eq. (22) and eq. (26). This is
the equivalent of finding the intersections between an
X-shaped graph and a hyperbola (fig. 2). The SIRs
of the important terminal is x and that of the ordinary
terminals is y. The matching CIRs are respectively x/G0

and y/G0. Each intersection leads to a feasible solution
to FONOC, from which the weighted throughput can be
calculated. min{x, y} ≥ γ0 continues to be necessary for
a maximum. If the only intersection lies in the SW leg
of the X, the “all-favored” solution is a local minimizer
(useless).

• The global maximizer is found among the feasible
FONOC-solving allocations already discussed, and is
whichever yields the largest weighted throughput.

B. Numerical examples

In the examples shown in figures 3 , 4 and 5, the frame-
success function is f(x) = [1 − (1/2) exp(x/2)]80, corre-
sponding to non-coherent FSK, no FEC, and packet size of
80 bits. The “preferred” SIR γ0 = 10.75 for this FSF. There
are 10 terminals, one of which is “important”.
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Fig. 3. With a moderate G0 = 20 and β = 1.5, two single-favorite solutions
exist, at x ≈4.5 and 13 (top). But the best yields only a throughput of 0.12
the chip rate. Fortunately, the bottom subplot shows 4 dual-favorite (n1 =
1) solutions at (13.8, 12.8), (13.7, 4.9), (4.7,12.7) and (4.7,5.0) leading to
weighted throughput of 0.7, 0.65, 0.05 and 0.015 the chip rate, respectively.
The “all favored” solution (n1 = 9) leads to a minimum.

The top subplot refers to the “single-favorite” solution
(SFBS), with x the SIR of the favorite. The first order
optimizing conditions (FONOC) require the SIR of the favorite
to be at one of the intersections between the shown bell-shaped
curve and the line 1/β (eq. (11)). The hyperbola at the top
corresponds to α, the CIR of the non-favorites, as a function
of x (eq. (13)). If α exceeds αmax = γ0/G0, its matching
spreading gain γ0/α is less than G0, the lowest available. The
bottom subplot corresponds to the multi-favorite solutions, in
which the important terminal and n1 ordinary ones operate
with the lowest available spreading gain G0, while the remain-
ing N1 − n1 ordinary terminals operate with an SIR of γ0. x
and y are respectively the SIR of the important and ordinary
terminals operating at the highest data rate (“favored”). The
X-graph arises from eq. (22), and the U graph from eq. (25).
U curves are numbered with the chosen n1. The 4 intersection



points between the U and X graphs may lead to feasible
solutions to FONOC. But min{x, y} ≥ γ0, and x must lie
inside the intervals indicated by the thick green line. Outside
these intervals, either the resulting CIR, α, for the non-favored
terminals, or its matching spreading gain is unacceptable.
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Fig. 4. With a small G0 = 4 and a moderate β = 1.5 the single-favorite
solution exists (top), and leads to the maximum. But all the multi-favorite
solutions fail (intersections of U and X curves falls outside the acceptable
range of x). An “all favored” solution exists (barely visible) but leads to a
minimum.

VI. DISCUSSION

We have investigated the optimal power levels and data rates
for terminals transmitting to one base station, in a scenario
relevant to 3G CDMA. The objective function is the weighted
sum of each terminal’s throughput. Two weights, which admit
various interpretations, including levels of importance, “util-
ities”, or monetary prices, are considered. The properties of
the physical layer are embodied in the frame success function
(FSF), which gives, in terms of received signal-to-interference
ratio (SIR), the probability that a data packet is correctly
received. But we do not impose any specific functional form
(“equation”) on the FSF. We assume that all that is known
about the FSF is that its graph is “S-shaped”, and base our
analysis on properties derived from this shape. Therefore,
we can accommodate many physical layer configurations of
practical interest. Each physical layer has a preferred SIR, γ0,
easily identified in the graph of the FSF. We have presented
a complete solution procedure, and provided and discussed
numerical examples.

Our model could be expanded to consider the issues of
QoS, fairness, and decentralized implementations, all of which
are of practical importance. Introducing non-negligible noise,
which we have started in [1], is also important, because the
noise term may include out-of-cell interference.
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Fig. 5. With a high G0 = 150 and β = 1.5 no single-favorite solution is
available. Although the bell curve does intercept the line 1/β (top), for any x,
α will be above 0.07, which means its matching spreading gain will fall below
G0. The same problem plagues multi-favorite solutions (U-X intersections)
with 1 ≤ n1 ≤ 8, all of which falls outside the acceptable range for x (shown
by the thick green lines). However, the “all-favored” solutions (n1 = 9)
(intersections of the hyperbola and the X) do exist. The NE intersection leads
to the global maximizer.
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