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Abstract— Relevant to the uplink of a VSG-CDMA system, a
technique part of 3G standards, this work investigates power
and data rate allocations that maximize the network weighted
throughput. Each terminal has one of 2 possible weights, which
admit various practical interpretations. Earlier works of ours
tell us that at least one terminal should operate at the highest
available data rate, and that terminals not operating at this rate
should operate at the same signal-to-interference ratio (SIR). This
value is determined by the physical layer through the function
that gives, in terms of the received SIR, the probability that
a data packet is received correctly. In this work, we provide
a more specific description of the optimal allocations. The key
to the solution is an intersection point between an “X-shaped”
graph arising from optimality conditions, and a “U-shaped”
graph arising from the feasibility condition on power ratios. Our
analysis is based on classical optimization theory, and should
accommodate a wide variety of physical layer configurations.

I. INTRODUCTION

Modern wireless networks will accommodate simultaneous
transceivers operating at very different bit rates. Several tech-
nologies have been proposed to accommodate multi-rate traffic
in such networks. Ottosson and Svensson [3] discuss several
multi-rate schemes based on Direct Sequence Code-Division
Multiple Access (DS-CDMA). One such scheme is variable
spreading gain (VSG) CDMA, as described, for example, by
I and Sabnani[1]. In a VSG-CDMA system, each terminal’s
spreading gain is defined as the ratio of the common chip rate
to the terminal’s bit rate.

Our model is relevant to an interference-limited single-cell
VSG-CDMA system in which each data terminal can operate
within a range of bit rates, assumed continuous for tractability.
We seek allocations of data rate and power levels which will
maximize the network weighted throughput. There are two
possible weights, which admit various interpretations, includ-
ing levels of importance or priority, “utilities”, or monetary
prices. We assume the traffic to be delay-tolerant.

Two recent publications of ours are relevant to this work.
In [7], we study an identical situation, but we consider
exclusively two terminals. In [8], we consider a multi-class
scenario in which there is a distinct weight per user, and
provide a general framework for this analysis, and a general

structure of solutions. However, at that level of generality, the
answers to certain important questions are not available. In
this work, we focus on a dual-class situation, which allows us
to describe in greater detail the optimal allocations.

Other authors have considered situations relevant to ours.
Our formulation has much in common with that of Ulukus
and Greenstein [10]. Major differences between ours and their
work include (a) our consideration of weights (b) our adoption
of a “generalized” frame-success function (discussed below),
and (c) the simplifying linearization involved in their solution
procedure. A recent work by Lee, et al. [2] is also of interest.
They also seek data rates and power allocation, and consider a
“sigmoidal-like” frame-success function. But they focus on the
downlink, do not consider weights, and provide a sub-optimal
algorithmic solution based on pricing. Our work has also many
similarities with that of Sung and Wong [9], who maximize
a fairly general “capacity function”. But they do not consider
weights, and assume that the terminal’s data rates are different
but fixed. Other related works seek decentralized solutions.

At the core of our analysis is a frame-success function
(FSF) that gives the probability that a data packet is received
successfully in terms of the terminal’s received signal-to-
interference ratio (SIR). This function is determined by physi-
cal attributes of the system, such as the modulation technique,
the forward error detection scheme, the nature of the channel,
and properties of the receiver. We do not impose any particular
algebraic functional form (“equation”) on the FSF. Rather,
we assume that all that is known about this function is that
its graph is a smooth S-shaped curve, as displayed in fig.
(1), and base our analysis on properties derived from this
shape. Hence, our analysis should apply to many physical layer
configurations of practical interest. Reference [4] discusses
further this modeling approach.

Below, we first build a relatively simple optimization model
relevant to uplink data transmission in one VSG-CDMA cell.
Afterward, we provide an outline of the general solution proce-
dure. Then, we apply this procedure to the dual class situation
of interest. Finally, we discuss our results, and comment on
future relevant research.



II. GENERAL FORMULATION

A. Problem Statement

We seek to solve:

Maximize
N∑

i=1

βiTi(Gi, αi) (1)

subject to
N∑

i=1

αi

1 + αi
= 1 (2)

Gi ≥ G0 i ∈ {1, · · · , N} (3)

In this simple model,

1) N is the number of terminals.
2) The throughput of terminal i is defined as RCTi(Gi, αi),

with

Ti(Gi, αi) :=
f(Giαi)

Gi
(4)

3) Gi = RC/Ri, i ∈ {1, . . . , N} is the spreading gain
of terminal i; i.e., the ratio of the channel’s chip rate ,
RC to the terminal’s data transmission rate Ri (bits per
second). G0 ≥ 1 is the lowest available spreading gain
(determined by the highest available data rate).

4) αi is the carrier-to-interference ratio (CIR) of the signal
from terminal i received at the base station. αi is defined
as,

αi :=
Pihi∑N

j=1
j �=i

Pjhj + σ2
=

Qi∑N
j=1
j �=i

Qj + σ2
(5)

with Pi the transmission power of terminal i, hi its the
path gain coefficient, hiPi := Qi its received power,
and σ2 a representative of the average noise power and,
possibly, out-of-cell interference. It can be shown that,
with σ2 = 0, the CIR’s must be such that

∑
αi/(1 +

αi) = 1 (constraint (2)) to ensure feasibility [5].
5) The product Giαi , denoted as γi , is terminal i’s signal

to interference (SIR) ratio.
6) βi ≥ 1 is a weight, which admits various practical

interpretations. With no loss of generality, we can always
set 1 = β1 ≤ · · · ≤ βN . In this work, we consider
the special case in which 1 = β1 = · · · = βN1 and
β = βN1+1 = · · · = βN1+N2 with N1 + N2 = N .
Thus, there are N1 “light weight” terminals and N2
“important” ones. However, in the development we often
leave the weights expressed as β1, · · · , βN to show the
patterns. Initially, we take N2 = 1, but later we discuss
a generalization.

7) We assume that there is a frame-success function (FSF),
fS , which gives the probability of the correct reception
of a data packet in terms of the received SIR. We assume
that this function is such that f(x) := fS(x) − fS(0)
has the general properties of the generalized “S-curve”
introduced in [6] (see fig. (1)), and that it has a con-
tinuous second derivative. BecausefS(0) is very small,

the difference between fS and f is generally negligible.
Nevertheless, we have good technical reasons to make
this correction, on the basis of [4]. No actual function
is used, except to provide numerical examples.

Constraint (2) can be written as
N∑

i=1

1
1 + αi

= N − 1 (6)

In the development below, an asterisk used as a superscript
on a variable denotes a specific value of the variable which
satisfies certain optimality condition. We refer to terminals
operating at maximal data rate as “favored” or “favorite”, and
call those terminals in the high-weight class “important”, as
opposed to “ordinary”.

B. General solution procedure

The general procedure is as follows:
• Create an “augmented” objective function, combining the

original objective function with Lagrange multipliers and
the constraint equations

• Set up the first-order necessary optimizing conditions
(FONOC). This involves setting the partial derivative of
the augmented objective function with respect to each
variable equal to zero. Moreover, inequalities of the
form G0 − Gi ≤ 0 contribute equations of the form
µi(G0 − Gi) = 0, where µi is a Lagrange multiplier.

• Solve FONOC. Evidently, each equation of the form
µi(G0 − Gi) = 0 requires that if Gi > G0 , µi be
equal to zero; and that if µi �= 0, Gi equal G0. Both
possibilities must be considered separately while finding
various solutions to FONOC.

• A solution to FONOC provides a candidate for a max-
imizer. The second-order sufficient conditions may con-
firm the candidate as a maximizer. This maximizer may
not be global.

III. APPLYING THE GENERAL SOLUTION PROCEDURE

A. Augmented objective function

The “augmented” objective function is
φ(G1, . . . , GN , α1, . . . , αN ) =

N∑

i=1

βiTi(Gi, αi) + λ

(
N∑

i=1

αi

1 + αi
− 1

)
+

N∑

i=1

µi(G0 − Gi)

(7)

B. General First-Order Necessary Optimizing Conditions
(FONOC)

The general FONOC can be expressed in vector form, with
γi = Giαi, as:





β1∂T1(G1, α1)/∂G1 − µ1
...

βN∂TN (GN , αN )/∂GN − µN

β1f
′(γ1) + λ(1 + α1)−2

...
βNf ′(γN ) + λ(1 + αN )−2





=





0
...
0
0
...
0





(8)



with






∑N
i=1(1 + αi)−1 = N − 1

µ1(G0 − G1) = 0
...

µN (G0 − GN ) = 0

(9)

Notice that

∂Ti(Gi, αi)
∂Gi

=
γif

′(γi) − f(γi)
G2

i

(10)

C. Solving FONOC

1) Interior solution : It is natural to start by seeking an
“interior” solution to FONOC, in which each Gi is greater
than G0, which requires µi = 0, (see equations (9)). In [8] we
discuss that, if G0 is not “too large”, one such solution exists
and can be described by a closed-form expression.

In this solution, all terminals operate at an SIR value
obtained by solving an equation of the general form:

xf ′ (x) = f (x) (11)

Reference [6] shows that for the class of generalized sig-
moidal functions, such as f , there is a unique positive value
γ0 which satisfies eq. (11). This value can be graphically
identified in figure (1) as the abscissa of the point where the
graph of f is tangent to a ray emanating from the origin;
that is, tangent to the straight line y = f ′(γ0)x. Thus, if the
function f is known, γ0 can be easily obtained graphically or
eq. (11) can be solved numerically. For instance, γ0 = 10.75
and f(γ0) = 0.83 for the FSF corresponding, under suitable
assumptions, to non-coherent FSK with packet size M=80,
which is

fs(x) =
[
1 − 1

2
exp

(
−x

2

)]80

(12)

However, the second-order optimality conditions reveal that
this solution is always a “saddle point” (neither a maximizer
nor a minimizer).

2) Single-Favorite Boundary Solution (SFBS): The fact that
the interior solution to FONOC is neither a maximizer, nor a
minimizer indicates that the true maximizer is a solution in
which one or more terminals operate at the lowest available
spreading gain. We start by seeking an allocation satisfying
FONOC in which only the spreading gain of the “important”
terminal is set at the lowest available value, G0 (i.e. this
terminal operates at the highest available data rate), with other
terminals’ spreading gains to be determined by the analysis.

In [8], we fully discuss this case, for the general situation in
which there is a distinct weight for each terminal. Our analysis
shows that in order for this single-favorite solution to exist, the
SIR of the “non-favored” terminals should be the previously
mentioned γ0, and the SIR of the favorite terminal should be
a solution to the equation (C1x/G0 + D1)2f ′(x)/f ′(γ0) =
1/βN . In this equation, C1 and D1 are constants which are
largest when the weights of the non-favored terminals are
smallest, and the other symbols are as previously defined. But
the graph of the function (C1x/G0+D1)2f ′(x)/f ′(γ0) has the
same “bell-shape” of that of the function x2f ′(x) in fig. (1).

Thus, the sought solution may not exist, because if G0 is “very
large”, the peak of this function may fall below 1/βN , unless
βN is also “very large”. This makes intuitive sense, because
when G0 is “very large”, the highest available data rate is
relatively small, and keeping only one terminal operating at
maximal data rate is not appealing, unless that terminal has “a
lot of weight”. However, when the highest available data rate
is very high, an allocation in which only one terminal operates
at this rate is more appealing.

0

1

SIR
γ
0
 

f(x) 

f’(γ
0
)x 

∝f’(x) 

xf’(x) 

∝x2f’(x) 

Fig. 1. A particular f(x) , xf ′(x), and scaled versions of f ′(x), and
x2f ′(x). γ0 satisfies xf ′(x) = f(x)

3) Dual-Favorite Boundary Solution (DFBS) to FONOC:
The “single favorite” boundary solution to FONOC may not
exist, and even if it does exist, it may not lead to a global
maximizer. We now seek an allocation satisfying FONOC,
in which both the “important” terminal N, and the terminal
whose index is N − 1 (“sub-favorite”) operate at the highest
permissible data rate. Below, we set GN = GN−1 = G0, and
µi = 0 for 1 ≤ i ≤ N − 2, and seek a solution to FONOC
satisfying these hypotheses.

a) General structure of the solution: Working with the
first N−2 rows of the vector equation (8), and keeping in mind
that our presumptions require that µi = 0 for 1 ≤ i ≤ N − 2,
we obtain

γ∗
i = G∗

i α
∗
i = γ0 for 1 ≤ i ≤ N − 2 (13)

with γ0 defined as the unique positive solution to equation
(11).

We also establish by working with the bottom half of the
vector equation (8) that:

−λ = βif
′(G∗

i α
∗
i ) (1 + α∗

i )
2 for 1 ≤ i ≤ N − 2 (14)

and

−λ = βif
′(G0α

∗
i ) (1 + α∗

i )
2 for N − 1 ≤ i ≤ N (15)

Combining equations (13) and (14), and the fact that βi = 1
for 1 ≤ i ≤ N − 1, we obtain

α∗
i = α∗

j for 1 ≤ i , j ≤ N − 2 (16)



Now, the constraint relation (6) (
∑

i(1 + αi)−1 =
N − 1) becomes an equation with only three unknowns,
α1 , αN−1 and αN . Substituting eq. (16) into (6) yields, with
x := G0α

∗
N and y := G0α

∗
N−1

N − 2
1 + α1

+
1

1 + y
G0

+
1

1 + x
G0

= N − 1 (17)

Equations (14) and (15) imply that

f ′(y)
(

1 +
y

G0

)2

= βf ′(x)
(

1 +
x

G0

)2

(18)

βf ′(x)
(

1 +
x

G0

)2

= f ′(γ0) (1 + α∗
1)

2 (19)

Equation (19) provides a closed-form expression for α∗
1 in

terms of x:

α∗
1 =

(
1 +

x

G0

)√
βf ′(x)
f ′(γ0)

− 1 (20)

The function on the right-hand side of eq. (20) takes on values
as low as −1, and yields a bell-shaped graph (such as that
shown at the top of fig. (2)). But, physically, α1 cannot be
negative. Thus, the existence of a DFBS in which all the
ordinary terminals are active necessitates that the SIR of the
favorite terminal be held within certain range. This range
expands as β grows, but shrinks as G0 increases. Within this
range, eq. (20) allows us to write eq. (17) as :

1
1 + y

G0

+
N − 2(

1 + x
G0

)√
βf ′(x)
f ′(γ0)

+
1

1 + x
G0

= N − 1 (21)

Equation (18) cannot be solved explicitly. However, equations
(18) and (21) form a system of two non-linear equations in
two unknowns which is, in principle, solvable. Once we know
the appropriate values of x∗ and y∗, we can find α∗

1, the
optimal CIR for terminals 1 . . . N − 2, from eq. (20), and
the corresponding spreading gain, from eq. (13), as γ0/α∗

1.
Thus, from x∗ and y∗ we can obtain a complete dual-favorite
solution to FONOC. Below, we describe this solution, and
comment on its optimality.

b) Description of the DFBS to FONOC: Figure (2)
summarizes much of what can be said about the DFBS. For
convenience, let h(t) := f ′(t) (1 + t/G0)

2, with t a “dummy”
variable. The SIR’s of the two terminals operating at maximal
bit rate, denoted as x and y, must satisfy eq. (18) in order to
satisfy FONOC. For the class of functions being considered,
the graph of h(t) is “bell-shaped”, as displayed in the top
sub-figure of fig. (2). That is, there is exactly one point t∗

at which this function has a global maximum, and for every
t1 ≤ t∗ there is a t2 ≥ t∗ such that h(t1) = h(t2). Thus, for
every pair (x2, y2) which satisfies eq. (18), with x2 ≥ t∗ and
y2 ≥ t∗, there is a corresponding pair (x1, y1), with x1 ≤ t∗

and y1 ≤ t∗, which also satisfies this equation, and so do
(x1, y2), and (x2, y1).

For a given value of x, there are two values of y which
satisfy βh(x) = h(y), unless x is “too close” to t∗. The bottom
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Fig. 2. With x and y respectively the SIR of the favorite and sub-
favorite terminals, FONOC requires that βh(x) = h(y), with h(t) =
f ′(t) (1 + t/G0)2. Any of themin pairs (x1, y1), (x2, y2), (x1, y2), or
(x2, y1) (top) satisfies this equation, but may not be feasible. We plot all
such points, which reveals an “X-shaped” graph for each β. NE, NW, SW
and SE are directional labels used to identify the “legs” of the X . On the
same axes, we plot the U-shaped graph arising from the constraint equation
(21). The 4 intersection points between the U-shaped and X-shaped graphs
for the given G0 and β lead to feasible solutions to FONOC. The NE such
point is the best candidate for a maximizer. But if G0 is “too large”, the
“U” may lie above the “X” and no intersections would exist. The hyperbolic
curves (dotted) represent the constraint equation when all terminals operate
at maximal bit rate. When G0 is low, the hyperbola may only intersect the
SW leg of the X-curve, which leads to a minimum.

sub-figure shows the “X-shaped” graph arising when we plot
all points (x, y) satisfying this equation. For a fixed β, this
graph has four distinct branches. The NE branch corresponds
to points like (x2, y2) (top sub-figure), which are both to the
right of the peak of h(t). Analogously, the NW, SW and
SE branches correspond to points like (x1, y2) , (x1, y1) and
(x2, y1) respectively.

The “U-shaped” curves at the bottom of fig. (2) are obtained
by plotting the constraint equation (21) for various values
of G0 and a given β. But recall that eq. (21) is valid only
for certain range of x. The points at which the U-curve
(corresponding to the given values of G0 and β) intersects the
corresponding X-curve satisfy both equations (18) and (21),
and hence each lead directly to a feasible solution to FONOC.

Increasing β has the effect of “pulling apart” the X-graph,
and “widening” the U-curve. Thus, if these graphs intersect
for a given β they still intersect after a moderate increase
in β. On the other hand, the U-curve “moves up” when G0
increases, while the X-graph is barely sensitive to changes
in G0. Thus, for G0 large enough, no intersection (solution)
exists. Otherwise, there are four intersection points, one in
each of the branches of the concerned X-curve.

We are tempted to prefer the intersection point in the NE
branch, where both x (the SIR of the favorite terminal) and y
(the SIR of the sub-favorite) are as high as possible. But we



must also consider the non-favored terminals, whose SIR is γ0,
by eq. (13). The throughput of each non-favored terminal is
obtained as f(γ0)/G1 = f(γ0)/(γ0/α∗

1) ∝ α∗
1. α∗

1 is obtained
from x∗ through eq. (20), which gives rise to a “bell shaped”
graph (see comments immediately following eq. (20)). Thus,
α∗

1 (and hence the throughput of the non-favored terminals) is
decreasing in x∗ beyond a certain value of x∗. Therefore, with
possibly many non-favored terminals, it is not obvious that, of
the four intersecting points, the one in the NE branch of the X
curve leads to the greatest weighted throughput; however, this
point does seem the best candidate. This issue merits further
research.

IV. EXTENSION AND DISCUSSION

We have investigated the optimal power levels and data
rates for terminals transmitting to one base station, in a
scenario relevant to 3G CDMA. The objective function is the
weighted sum of each terminal’s throughput. Two weights,
which admit various interpretations, including levels of im-
portance, “utilities”, or monetary prices, are considered. We
have utilized a model which can accommodate many physical
layer configurations of practical interest. The properties of the
physical layer are embodied in the frame success function
(FSF), which gives, in terms of received signal-to-interference
ratio (SIR), the probability that a data packet is correctly
received. Each physical layer has a preferred SIR, γ0, easily
identified in the graph of the FSF.

Much of the preceding development has focused on the
“dual-favorite” boundary solution (DFBS) to the first-order
necessary optimizing conditions (FONOC), in which an “im-
portant” and an “ordinary” terminal operate at maximal data
rate, while other terminals operate at certain optimal SIR, γ0.
This development can be extended to the more general multi-
favorite case, in which all the “important” terminals, N2, and
several “ordinary” terminals, say n1 ≤ N1, operate at maximal
data rate.

The key to obtaining the DFBS is to find a solution to a
system of two non-linear equations in two unknowns, (18)
and (21), in which the 2 variables are the SIR of the favorite
and sub-favorite terminals. Through fig. (2), we described the
solution to this system as one of the intersection points of the
X-shaped graph (from eq. (18)) with the U-shaped graph (from
eq. (21)). In the multi-favorite situation, eq. (18), βh(x) =
h(y), would apply unmodified, with the understanding that
x is the common SIR of all important terminals, and y is
the common SIR of all the ordinary terminals operating at
maximal data rate. The “non-favored” terminals would again
operate with an SIR of γ0. But eq. (21) would need to be
modified slightly as

n1

1 + y
G0

+
N1 − n1(

1 + x
G0

) √
βf ′(x)
f ′(γ0)

+
N2

1 + x
G0

= N1+N2−1 (22)

The graph of eq. (22) has the same U-shape as that of
eq. (21), and is appropriate over a certain range of x as
discussed following eq. (20). Therefore, the general discussion
summarized in the caption of fig. (2) still applies.

In principle, we would like n1, the number of “ordinary”
terminals operating at maximal data rate, to be as large as
possible. However, the U-curve “moves up” when n1increases.
Thus, for sufficiently large n1, the sought intersection may not
exist. Moreover, when we make n1 = N1 so that all terminals
operate at maximal data rate, then the U-curve is replaced by a
hyperbolic “L-curve”, as displayed in fig. (2). For sufficiently
low G0, the L-curve may intersect only the SW leg of the X-
curve, in which both x and y are “low”, and this would lead
to a minimum, not a maximum.

More research is needed before we fully comprehend all
interesting aspects of this problem. This includes performing
various technical tasks, such as formally proving the shapes
of some key graphs, and verifying certain second-order opti-
mality conditions. The issues of QoS requirements, fairness,
non-negligible out-of-cell interference, and decentralized im-
plementations are of practical importance and deserve future
consideration.
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