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Abstract— Relevant to the uplink of a VSG-CDMA system, a
technique part of 3G standards, this work seeks power and data
rate allocations for each of N terminals, so that the network
weighted throughput is maximized. The weights admit various
interpretations, including levels of importance, “utility”, and
price. We have learned that at least one terminal should operate
at the highest available data rate. Our analysis leads to allocations
in which terminals not operating at the highest data rate operate
at the same signal-to-interference ratio (SIR). This value is
determined by the physical layer through the function that gives,
in terms of the received SIR, the probability that a data packet
is received correctly. Other factors held constant, lowering the
highest available data rate increases the number of terminals
which should operate at maximum data rate. This analysis
conforms to classical optimization theory. Our model should
accommodate a wide variety of physical layer configurations.

I. INTRODUCTION

Modern wireless networks will accommodate simultaneous
transceivers operating at very different bit rates. Several tech-
nologies have been proposed to accommodate multi-rate traffic
in such networks. Ottosson and Svensson [3] discuss several
multi-rate schemes based on Direct Sequence Code-Division
Multiple Access (DS-CDMA). One such scheme is variable
spreading gain (VSG) CDMA, as described, for example, by
I and Sabnani[1]. In a VSG-CDMA system, each terminal’s
spreading gain is determined as the ratio of the common chip
rate to the terminal’s bit rate.

The model discussed in this paper is relevant to an
interference-limited single-cell VSG-CDMA system in which
each data terminal can operate within a range of bit rates,
which is assumed continuous for tractability. We seek an
allocation specifying, for each active terminal, a choice of
data rate and power level which will maximize the network
weighted throughput. The weights admit various interpreta-
tions, including levels of importance or priority, “utilities”, or
monetary prices (contribution to the network’s revenues). The
traffic is assumed to be delay-tolerant (“best-effort”).

Similar situations have been considered by the literature.
Our formulation has much in common with that of Ulukus
and Greenstein [9]. Major differences between ours and their
work include (a) our consideration of weights (b) our adoption

of a “generalized” frame-success function (discussed below),
and (c) the simplifying linearization involved in their solution
procedure. A recent work by Lee, et al. [2] is also of interest.
They also seek data rates and power allocation, and consider a
“sigmoidal-like” frame-success function. But they focus on the
downlink, do not consider weights, and provide a sub-optimal
algorithmic solution based on pricing. Our work has also many
similarities with that of Sung and Wong [8]. They maximize
a fairly general “capacity function”. But they do not consider
weights, and assume that the terminal’s data rates are fixed
exogenous parameters, as opposed to variables to be chosen
optimally. Other related works seek decentralized solutions.

Of special notice is our characterization of the frame-
success function (FSF), which gives the probability that a
data packet is received successfully in terms of the termi-
nal’s received signal-to-interference ratio (SIR). This function,
which is at the core of the analysis, is determined by physical
attributes of the system, including the modulation technique,
the forward error detection scheme, the nature of the channel,
and properties of the receiver, including its demodulator,
decoder, and antenna diversity, if any. We do not impose
any particular algebraic functional form (“equation”) as FSF.
Rather, we assume that all that is known about this function
is that its graph is a smooth S-shaped curve, as displayed
in fig. (1)(see [4] for further discussion of this approach).
Our development exploits properties derived from this shape.
Hence, our analysis should apply to many physical layer
situations of practical interest, as long as they give rise to
an FSF with an S-shaped graph.

Below, we first build a relatively simple optimization model
relevant to uplink data transmission in one VSG-CDMA cell.
Afterward, we provide an outline of the general solution
procedure. Then, we discuss the two-terminal special case, as it
provides insights useful for the general analysis. Subsequently,
we apply the general solution procedure to the N-terminal
scenario, and provide some general results. Finally, we discuss
our results, and comment on additional research which is
needed before we fully comprehend all interesting aspects of
this problem.



II. GENERAL FORMULATION

A. Problem Statement

We seek to solve:

Maximize
N∑

i=1

βiTi(Gi, αi) (1)

subject to
N∑

i=1

αi

1 + αi
= 1 (2)

Gi ≥ G0 i ∈ {1, · · · , N} (3)

In this simple model,

1) N is the number of terminals.
2) The throughput of terminal i is defined as RCTi(Gi, αi),

with

Ti(Gi, αi) :=
f(Giαi)

Gi
(4)

3) Gi = RC/Ri, i ∈ {1, . . . , N} is the spreading gain
of terminal i; i.e., the ratio of the channel’s chip rate ,
RC to the terminal’s data transmission rate Ri (bits per
second). G0 ≥ 1 is the lowest available spreading gain
(determined by the highest available data rate).

4) αi is the carrier-to-interference ratio (CIR) of the signal
from terminal i received at the base station. αi is defined
as,

αi :=
Pihi∑N

j=1
j �=i

Pjhj + σ2
=

Qi∑N
j=1
j �=i

Qj + σ2
(5)

with Pi the transmission power of terminal i, hi its
“gain” (path loss) coefficient, hiPi := Qi its received
power, and σ2 a representative of the average noise
power and, possibly, out-of-cell interference. It can be
shown that, with σ2 = 0, the CIR’s must be such that∑

αi/(1 + αi) = 1 (constraint (2)) to ensure feasibility
[5].

5) The product Giαi , denoted as γi , is terminal i’s signal
to interference (SIR) ratio.

6) βi ≥ 1 is a weight, which admits various practical
interpretations. Without loss of generality, we set 1 =
β1 ≤ · · · ≤ βN .

7) We assume that there is a real-valued frame-success
function (FSF) which gives the probability of the cor-
rect reception of a data packet in terms of the re-
ceived SIR. We assume that this function is such that
f(x) := fS(x) − fS(0) has the general properties of
the generalized “S-curve” introduced in [6] (see fig.
(1)), and that it has a continuous second derivative. The
difference between fS and f is generally negligible.
Nevertheless, there are good technical reasons for f to
be preferred over fs [4]. It is stressed that no actual
function is used, except to provide numerical examples.
Our analysis should apply to a wide variety of physical

layer configurations, as long as they give rise to an FSF
with an S-shaped graph.

It is sometimes useful to observe that constraint (2) can be
expressed as

N∑

i=1

1
1 + αi

= N − 1 (6)

B. General solution procedure

The general procedure is as follows:

• Create an “augmented” objective function, combining the
original objective function with Lagrange multipliers and
the constraint equations

• Set up the first-order necessary optimizing conditions
(FONOC). This involves setting the partial derivative of
the augmented objective function with respect to each
variable equal to zero. Moreover, inequalities of the
form G0 − Gi ≤ 0 contribute equations of the form
µi(G0 − Gi) = 0, where µi is a Lagrange multiplier.

• Solve FONOC. Evidently, each equation of the form
µi(G0 −Gi) = 0 requires that if Gi > G0 , then µi must
equal zero; and that if µi �= 0, Gi must equal G0. Both
possibilities must be considered separately while finding
various solutions to FONOC.

• A solution to FONOC provides a candidate for a max-
imizer. The second-order sufficient conditions may con-
firm the candidate as a maximizer. This maximizer may
not be global.

III. SPECIAL CASE: N=2

For pedagogical reasons, we first discuss a two-terminal
situation. This case is analyzed in greater detail in [7]. Here,
we discuss the essential ideas and results.

We seek to solve:

Maximize
f(G1α1)

G1
+

βf(G2α2)
G2

(7)

subject to α1α2 = 1 ; G1 ≥ G0 ; G2 ≥ G0

It can be easily verified that for N=2, the constraint (2)
reduces to α1α2 = 1 . This also follows from the fact that,
with negligible noise, α1 := Q1/Q2 := 1/α2.

A. Augmented objective function

Our “augmented” objective function is φ(G1, G2, α1, α2) =

f(G1α1)
G1

+
βf(G2α2)

G2
+λ(α1α2−1)+

2∑

i=1

µi(G0−Gi) (8)

B. First-Order Necessary Optimizing Conditions (FONOC)

The FONOC can be expressed in vector form, with γi =
Giαi, as:





(γ1f
′(γ1) − f(γ1)) /G2

1 − µ1
β (γ2f

′(γ2) − f(γ2)) /G2
2 − µ2

f ′(γ1) + λα2
βf ′(γ2) + λα1



 =





0
0
0
0



 (9)



with






α1α2 = 1
µ1(G0 − G1) = 0
µ2(G0 − G2) = 0

(10)

C. Finding solutions to FONOC

1) Interior (‘balanced’) solution : First we seek a solution
to FONOC which lies in the interior of the feasible region.
That is, we presume that a solution exists in which both G1
and G2 are greater than G0, which require µ1 = µ2 = 0 (see
equations (10)). Then, we proceed to check whether such a
solution actually exists.

Working with the top 2 rows of the matrix equation (9), we
obtain γif

′(γi) = f(γi), an equation of the general form:

xf ′ (x) = f (x) (11)

Rodriguez[6] shows that for the class of generalized sig-
moidal functions, such as f , there is a unique positive value
γ0 which satisfies equation (11). This value can be graphically
identified in figure (1) as the abscissa of the point where the
graph of f is tangent to a ray emanating from the origin; that
is, tangent to the straight line y = f ′(γ0)x.

Therefore, if any values of the variables of interest satisfy,
under the stated hypotheses, equations (9) and (10) , they must
be such that:

G∗
1α

∗
1 = G∗

2α
∗
2 = γ0 (12)

By working with the bottom half of the matrix equation (9),
we establish that:

−λ =
f ′(G∗

1α
∗
1)

α∗
2

=
βf ′(G∗

2α
∗
2)

α∗
1

(13)

Now, substituting equation (12) into equation (13), we
obtain α∗

1/α∗
2 = β, which leads to a complete “interior”

solution to FONOC:

α∗
1 =

1
α∗

2
=

√
β

G∗
1α

∗
1 = G∗

2α
∗
2 = γ0 (14)

Notice that, in order for these values to be feasible, G∗
i ≥

G0; i.e., G0
√

β ≤ γ0.
Replacing these values into the objective function yields

TB =
f(γ0)
G∗

1
+

βf(γ0)
G∗

2
=

f(γ0)
√

β

γ0
+

βf(γ0)
γ0

√
β

(15)

We have found a closed form solution. If the function f is
known, γ0 can be easily obtained graphically (see figure (1))
or equation(11) can be solved numerically. For instance, for
the FSF corresponding, under suitable assumptions, to non-
coherent FSK with packet size M=80, which is,

f(x) =
[
1 − 1

2
exp

(
−x

2

)]80

(16)

γ0 = 10.75, f(γ0) = 0.83 .
This allocation has an interesting property: it is ‘balanced’

in the sense that both users experience the same weighted

throughput: f(γ0)
√

β/γ0. The “fairness” of this operating
point may be a desirable feature in certain situations.

Second-order sufficient conditions: The previously found
allocation does satisfy FONOC . But it can be shown through
the second-order sufficient conditions that it is neither a
minimizer nor a maximizer. It is a saddle point [7].

2) An Asymmetric-Rates Boundary Solution (ARBS): In
the preceding section, we identified an “interior” solution
to FONOC. But this allocation is a non-maximizer, which
suggests that a maximizer be sought over the “boundary” of
the feasible region; i.e., when Gi = G0 for one or both i.
Below, we seek an ARBS solution, in which the “favorite”
terminal is the only one transmitting at the highest allowable
data rate. That is, we set G2 = G0, which allows µ2 �= 0, and
µ1 = 0, which allows G1 ≥ G0.

Working with the first row of equation (9), and keeping in
mind that we have set µ1 = 0, we obtain G1α1 = γ0, with
γ0 as defined by equation (11). Working with the bottom half
of equation (9), and using the preceding result, we establish
that:

G2
0f

′(γ0)
G0α2

= βf ′(G0α2)G0α2 ⇒ x2f ′(x)
f ′(γ0)

=
G2

0

β
(17)

with x := G0α2. Hence, α∗
2 is obtained by solving this

equation.
For the class of functions being considered, x2f ′(x) is a

“bell-shaped” function, as shown by figure (1).

0
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Fig. 1. A particular f(x) , xf ′(x), and scaled versions of f ′(x), and
x2f ′(x). γ0 satisfies xf ′(x) = f(x)

This implies that, if G2
0/β surpasses the “peak” of the

function on the left hand side of equation (17), then, this
equation has no solutions. Therefore, if we denote as τ2 the
maximal value (peak) of the function x2f ′(x)/f ′(γ0), (see
figure (1)) a condition for the ARBS to exist is that G2

0/β ≤ τ2

or that G0 ≤ τ
√

β. If G2
0/β is sufficiently small, two values

of x will satisfy equation(17). The larger value, to the right of



the peak, is chosen as a prospective maximizer, and is denoted
as γ00.

In terms of γ00 we can identify a complete solution to
FONOC. By definition, γ00 = G0α2, which implies that
α∗

2 = γ00/G0 satisfies FONOC, and obviously so does α∗
1 =

1/α∗
2 = G0/γ00. And since FONOC requires that G∗

1α
∗
1 = γ0,

then G∗
1 can be obtained as γ0/α∗

1 = γ0γ00/G0.
But feasibility requires that G∗

1 ≥ G0, which imposes that
G2

0 < γ0γ00. And we already had the condition that G2
0 ≤ βτ2,

so G2
0 cannot exceed min{γ0γ00, βτ2} in order for the ARBS

to be feasible.
For example, for the frame success function introduced

previously as equation (16), γ0 = 10.75, and f(γ0) = 0.83.
When G0 = 2 and β = 2, both x = 22.1 and x = 3.97 satisfy
equation (17) . Hence, γ00 = 22.1. This gives TARBS = 1.01.
By comparison, the ‘balanced’ solution only yields TB =
0.15

√
2 = 0.21, which is much less.

Second-order sufficient conditions: It can be verified that
the allocation we just found in terms of γ00, if feasible,
is a maximizer.

3) “Greedy” allocation: In the preceding section, we con-
sidered the ARBS, in which only the “favorite” terminal
operates at the lowest available spreading gain (fastest data
rate). It was observed that the ARBS fails to exist if G2

0/β
is “too large”, and would be infeasible if G0 >

√
γ0γ00. In

this section we seek a “greedy” solution to FONOC, in which
both terminals operate at the highest available data rate.

Working with the last two rows of equation (9) we establish
that:

−λ =
f ′(γ1)

γ2
=

βf ′(γ2)
γ1

⇒ γ1f
′(γ1) = βγ2f

′(γ2) (18)

with the constraint γ1γ2 = G2
0.

The symmetric case (β = 1). To gain insight into the
general case, we consider the special case in which β=1. In this
case, it is evident that γ1 = γ2 = G0 (α1 = α2 = 1) (equal
received powers) satisfies equation (18), and hence FONOC .

Second-order sufficient conditions: For the class of func-
tions we are considering, the graph of the function xf ′(x) is
a “bell-shaped” curve, as shown by figure (1). Let x̂ be the
unique point x̂ where xf ′(x) reaches its maximum. In [7] we
discuss that, when β = 1, the allocation γ1 = γ2 = G0 is a
maximizer for G0 > x̂, but the same allocation is a minimizer
if G0 < x̂. In particular, for the function given as equation
(16), xf ′(x) reaches its maximum at x̂ = 7.95. Thus, in this
example, with β = 1, γ1 = γ2 = G0 is a maximizer for
G0 > 7.95, but a minimizer for G0 < 7.95.

IV. THROUGHPUT OPTIMIZATION WITH N TERMINALS

A. Augmented objective function

We discuss now the N-terminal situation.
The pertinent “augmented” objective function is

φ(G1, . . . , GN , α1, . . . , αN ) =
N∑

i=1

βiTi(Gi, αi) + λ

(
N∑

i=1

αi

1 + αi
− 1

)
+

N∑

i=1

µi(G0 − Gi)

(19)

B. General First-Order Necessary Optimizing Conditions
(FONOC)

The general FONOC can be expressed in vector form, with
γi = Giαi, as:





β1∂T1(G1, α1)/∂G1 − µ1
...

βN∂TN (GN , αN )/∂GN − µN

β1f
′(γ1) + λ(1 + α1)−2

...
βNf ′(γN ) + λ(1 + αN )−2





=





0
...
0
0
...
0





(20)

with






∑N
i=1(1 + αi)−1 = N − 1

µ1(G0 − G1) = 0
...

µN (G0 − GN ) = 0

(21)

Notice that

∂Ti(Gi, αi)
∂Gi

=
γif

′(γi) − f(γi)
G2

i

(22)

C. Solving FONOC

1) Interior solution : First we seek an interior solution to
FONOC. That is, we presume that a solution to FONOC exist
in which each Gi is greater than G0, which requires µi = 0,
(see equations (21)). Then, we proceed to check whether such
a solution exists.

Working with the top half of the vector equation (20),
we obtain γif

′(γi) = f(γi) . Therefore, from the discussion
following equation (11), we conclude that, under the stated
hypotheses,

G∗
i α

∗
i = γ0 (23)

By working with the bottom half of the vector equation
(20), we establish that:

−λ = βif
′(G∗

i α
∗
i ) (1 + α∗

i )
2 = βjf

′(G∗
jα

∗
j )

(
1 + α∗

j

)2
(24)

Now, substituting equation (23) into equation (24), we
obtain :

1
1 + α∗

j

=

√
βj/βi

1 + α∗
i

(25)

Equation (25) enables us to express α∗
j (j > 1) in terms of

α1. This way, the constraint relation (6) becomes an equation
which we can solve for α∗

1:
∑N

j=1

√
βj/β1

1 + α∗
1

= N − 1 ⇒ α∗
1 =

B

(N − 1)
− 1 (26)



with β1 = 1, and

B :=
N∑

j=1

√
βj (27)

Once we know the value of α∗
1, equation (25) gives us

the value of each α∗
j . And once we know each α∗

i , equation
(23) gives us immediately the corresponding G∗

i as γ0/α∗
i .

Therefore, we now have a complete “interior” closed-form
solution to the first-order optimizing conditions :

α∗
i + 1 =

B

(N − 1)
√

βi

(28)

G∗
i = γ0/α∗

i (29)

Notice that, in order for these values to be feasible, G∗
i =

γ0/α∗
i ≥ G0 or α∗

i ≤ γ0/G0. Under the construction 1 =
β1 ≤ · · · ≤ βN , the largest α∗

i is actually α∗
1 (see equation

(28)). Thus, this condition requires that B =
∑N

j=1

√
βj ≤

(N − 1) γ0/G0.
Substituting the above values into the objective function

yields :

Tint-N =
N∑

i=1

βiT
∗
i =

f(γ0)
γ0

N∑

i=1

βiα
∗
i

with

βiα
∗
i =

B
√

βi

N − 1
− βi (30)

We stress that this a closed form solution. γ0 can be easily
obtained from the graph of function f (see fig. (1)), or equation
(11) can be solved numerically.

It is noteworthy that, if βi = 1 for all i (terminals are equally
“important”), B = N and equation (30) reduces to 1/(N −1).
Thus, all terminals enjoy the same throughput.

Second-order sufficient conditions It can be shown that the
previously found allocation (equations (28 and29)) is neither
a maximizer nor a minimizer, but a saddle point.

2) Single-Favorite Boundary Solution (SFBS): We sought
and found an allocation satisfying FONOC, where every
terminal’s data rate is less than the highest available value
(equations (29,28)). Unfortunately, this allocation is neither
a maximizer, nor a minimizer. This indicates that the true
maximizer is a non-interior solution to FONOC; i.e., a solution
in which one or more terminals operate at the lowest available
spreading gain. In principle, the number of possible non-
interior solutions could be very large, of the order of 2N .
A basic rationale is needed to systematically search for these
solutions.

A reasonable starting point is to to seek an allocation satis-
fying FONOC in which only the spreading gain of the “most
important” terminal is set at the lowest available value, G0
(i.e. this terminal operates at the highest available data rate),
with other terminals’ spreading gains to be determined by the
analysis. Below we seek one such solution to FONOC. Our
presumption implies that GN = G0, and that the associated
Lagrange multipliers are such that µi = 0 for 1 ≤ i < N .

a) General form of SFBS: Working with the first N − 1
rows of the vector equation (20), and keeping in mind that we
have presumed that µi = 0 for 1 ≤ i < N , we obtain

Giαi = γ0 for 1 ≤ i < N (31)

with γ0 as defined by equation (11), and shown in figure (1).
By working with the bottom half of the vector equation

(20), we establish that:

−λ = βif
′(G∗

i α
∗
i ) (1 + α∗

i )
2 for 1 ≤ i < N (32)

and

−λ =
βN

G2
0
f ′(x) (G0 + x)2 (33)

with x := G0α
∗
N .

Combining equations (31and 32) we get

1
1 + α∗

j

=

√
βj/βi

1 + α∗
i

for 1 ≤ i , j < N (34)

Equation (34) enables us to express α∗
i (1 < i < N ) in

terms of α1. This way, the constraint relation (6) becomes an
equation with only two unknowns, α1 and αN . Thus, we can
express α∗

1 in terms of α∗
N . With

BN−1 :=
N−1∑

j=1

√
βj (35)

substituting equation (34) into (6) (
∑

i(1 + αi)−1 = N − 1)
yields

BN−1

1 + α∗
1

+
G0

G0 + x
= N − 1 → (36)

G0 + x

1 + α∗
1

=
N − 1
BN−1

x +
N − 2
BN−1

G0 → (37)

α∗
1 + 1 =

BN−1

N − 1 − (1 + α∗
N )−1 (38)

Equations (32, and 33) can be combined as (β1 = 1):

βNf ′(x) (G0 + x)2 = G2
0f

′(γ0) (1 + α∗
1)

2 (39)

which can be put (using equation (37)) as
(

C1
x

G0
+ D1

)2
f ′(x)
f ′(γ0)

=
1

βN
(40)

with

C1 =
N − 1
BN−1

; D1 =
N − 2
BN−1

(41)

Let us assume that a meaningful solution to equation (40)
can be found, and denote this solution as γ00. In terms of γ00
we can identify a complete allocation satisfying FONOC.

By definition, γ00 = G0α
∗
N which implies that α∗

N =
γ00/G0 satisfies FONOC. From α∗

N , equation (38) gives
us immediately α∗

1, and from α∗
1 we can obtain each α∗

i

(1 < i < N ) through equation (34). And since each G∗
i

(1 ≤ i < N ) must satisfy G∗
i α

∗
i = γ0 (equation (31)), once



each α∗
i (1 < i < N ) is known, so is the corresponding G∗

i .
The complete allocation is given by:

G∗
N = G0 (42)

G0α
∗
N = γ∗

N = γ00 (43)

for 1 ≤ i < N

α∗
i + 1 =

1√
βi

BN−1

N − 1 − (1 + α∗
N )−1 (44)

G∗
i α

∗
i = γ∗

i = γ0 (45)

Notice, however, that each G∗
i must satisfy G∗

i ≥ G0 or α∗
i ≤

γ0/G0.

b) Existence of this solution: The preceding allocation
depends on a solution to the single-variable algebraic equa-
tion (40). Here we examine the conditions under which this
algebraic equation has solution(s), and if it does, which one
of its solutions should be chosen.

Observe, first, that C1x/G0 + D1 ≤ x + 1. This is so,
because the left-hand side of this inequality is largest when
G0 and BN−1 are smallest (see equations (41)). Because of
technological limitations, G0 ≥ 1 (the highest available data
rate cannot exceed the channel’s “chip rate”). And, BN−1 =∑N−1

j=1

√
βj ≥ N − 1, since, by construction, 1 = β1 ≤ βi

for ∀i. Hence, C1 ≤ 1 and D1 ≤ (N − 2)/(N − 1) ≤ 1. All
this implies that C1x/G0 + D1 ≤ x + 1.

It can be shown that, as displayed by figure (1), for
the class of functions being considered, the graph of the
function x2f ′(x) is “bell-shaped”, and so is the graph
of (x + 1)2 f ′(x)/f ′(γ0). On the basis of the preceding
paragraph, it can be further concluded that the function
(C1x/G0 + D1)

2
f ′(x)/f ′(γ0) is also bell-shaped. This im-

plies that, if G0 is “too large”, the “peak” of this function
may fall below 1/βN , unless βN is also “very large”. Thus,
equation (40) may have no solution. On the other hand, when
G0 is sufficiently small and/or βN is sufficiently large, two
values of x, on either side of the peak of the concerned
function, will satisfy equation (17). The larger value is chosen
as the prospective maximizer called γ00 in the preceding
subsection. Equations (42-45) give a complete solution to
FONOC in terms of γ00 .

3) Dual-Favorite Boundary Solution: As discussed in sec-
tion IV-C.2.b, there may not be a feasible solution to FONOC
in which the favorite terminal is the only one operating at
the highest available data rate. In this section we explore
the existence of a boundary allocation satisfying FONOC, in
which both the favorite, and second-favorite terminals operate
at the highest data rate. That is, we set GN = GN−1 = G0,
and µi = 0 for 1 ≤ i ≤ N − 2, and determine under
which conditions, if any, a solution to FONOC satisfying these
hypotheses actually exists.

Proceeding as in section IV-C.2, we determine that, for the
special case in which both favorite terminals have the same
weight, βN , in order for the desired solution to exist, the SIR
of the “non-favorite” terminals should be γ0, and the SIR of

the favorites should be a solution to the algebraic equation:
(

C2
x

G0
+ D2

)2
f ′(x)
f ′(γ0)

=
1

βN
(46)

with BN−2 =
∑N−2

j=1

√
βj and

C2 =
N − 1
BN−2

; D2 =
N − 3
BN−2

(47)

But notice that this equation is nearly identical to equation
(40). The only difference is that the constants C2 and D2
replace C1 and D1 (equation (41)). Accordingly, the discus-
sion of section IV-C.2.b also applies to this case. Thus, we
know that a meaningful solution to equation (46) exists under
conditions analogous to those given in section IV-C.2.b for
the existence of a solution to equation (40). Notice also that
BN−2 < BN−1 which tends to make the left-hand side of
equation (46) larger than the left-hand side of equation (40)
(in particular, C2 > C1). This means that, for fixed G0 and
βN , equation (46) may have solutions even if (40) does not.

Once a meaningful solution to equation (46) has been found,
following a development analogous to that leading to equations
(42, 43, 44, and 45), we can obtain a complete “dual favorite”
solution to FONOC.

V. DISCUSSION

We have sought the optimum power levels and data rates
for terminals transmitting to one base station, in a scenario
relevant to 3G CDMA. The objective function is the weighted
sum of each terminals’ throughput. These weights admit vari-
ous interpretations, including levels of importance, “utilities”,
or monetary prices. We have utilized a model which can
accommodate many physical layer configurations of practical
interest. The properties of the physical layer are embodied in
the frame success function (FSF), which gives, in terms of
received signal-to-interference ratio (SIR) the probability that
a data packet is correctly received. Each physical layer has a
preferred SIR, γ0, easily identified in the graph of the FSF.

The 2-terminal special case makes us focus on 3 assign-
ments: (i) a “balanced” allocation, in which both terminals
operate at γ0, and achieve equal weighted throughput; (ii) an
“unfair” assignment in which the favorite terminal operates
at maximum data rate, with the other terminal achieving the
optimal SIR, γ0; and (iii) a “greedy” assignment in which both
terminals operate at maximal bit rate. The balanced assignment
is always suboptimal, implying that “fairness” comes at the
expense of performance, in this context. The favorite terminal
should always operate at maximal data rate. Only when the
ratio G0/

√
β is larger than certain threshold determined by the

physical layer through the FSF should both terminals operate
at maximal data rate (G0 is the smallest available spreading
gain and β is the weight of the favorite terminal).

The “greedy” allocation is particularly treacherous, which
can be shown clearly when both terminals are equally
weighted. In this case, an equal-received-power assign-
ment satisfies the first-order necessary optimizing conditions
(FONOC). But this assignment can lead to either a maximum



or a minimum, depending upon whether G0 exceeds a specific
value determined by the physical layer. It is significant that
the greedy and the unfair allocations are complementary in
this sense: A low G0 may turn the greedy allocation into a
minimizer, but the unfair allocation, which is a maximizer,
needs a low G0 in order to be feasible.

With N terminals, the situation is more opaque, and neces-
sitates additional research. Nevertheless, our results provide
useful guidance. We have identified an “interior” solution
to FONOC in which all terminals achieve the optimal SIR,
γ0, referred to above, and operate with data rates below the
highest available. This solution is “fair” at least when terminals
are equally weighted; but it is suboptimal (a saddle point).
Thus, one or more terminals should operate at the highest
available data rate. But, for a large N, many such allocations
are possible.

A reasonable starting point for examining these solutions
is to seek an allocation satisfying FONOC in which only the
favorite terminal operates at the highest available data rate.
Our analysis shows that in order for this “single favorite”
solution to exist, the SIR of the “non-favorite” terminals
should be the previously mentioned γ0, and the SIR of
the favorite terminal should be a solution to the equation
(C1x/G0 + D1)2f ′(x)/f ′(γ0) = 1/βN . In this equation, f
is the FSF, βN ≥ 1 is the weight of the favorite terminal, and
C1 and D1 are constants which are largest when the weights
of the non-favorite terminals are smallest. But the function
(C1x/G0 + D1)2f ′(x)/f ′(γ0) is “bell-shaped”. Thus, if G0
is “too large” the “peak” of this function may fall below 1/βN ,
unless βN is also “very large”. All this makes intuitive sense.
When G0 is “very large”, the highest available data rate is
relatively low, so keeping only one terminal operating at the
highest data rate is not appealing, unless that terminal has “a
lot more weight” than the others. However, when G0 is “very
small”, the highest available data rate is very high, and an
allocation in which only one terminal operates at this very
high data rate is more appealing .

When a “single favorite” solution to FONOC is not possible,
a natural step is to seek a “dual favorite” solution. Doing so led
us to a situation very similar to what we just described. The
non-favorite terminals should operate with an SIR of γ0, and
the SIR of the 2 favorites should be a solution to an equation
analogous to that discussed in the previous paragraph. Even
if the previous equation has no solution, this equation may
have solutions. But if G0 is sufficiently large, the dual-favorite
solution to FONOC may also fail to exist. In this case, we
would seek a “triple favorite” solution. And so on.

Other factors held constant, lowering the highest available
data rate increases the number of terminals which should
operate at maximum data rate. It is noteworthy that terminals
not operating at maximal data rate should still achieve the
preferred SIR of γ0, which is a respectable value. For example,
for a simple, but plausible FSF (equation (16)), f(γ0) = 0.83.
Thus, even “non-favorite” terminals enjoy reasonable error
performance.

More research is needed before we fully comprehend all
interesting aspects of this problem. This includes various
technical tasks, such as verifying certain second-order op-
timality conditions, which are essential to ascertain that a
solution to FONOC is actually a maximizer. This involves
showing that certain matrices are positive definite. But with
an arbitrary FSF, and symbolic parameters (N , G0, βi , etc.),
these matrices are symbolic, which complicates this matter.
Consideration of interesting special cases could enhance our
intuition, as would additional numerical exercises. The issues
of QoS requirements, fairness, non-negligible out-of-cell in-
terference, and decentralized implementations are of practical
importance and deserve future consideration.
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