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Abstract— We study a cell shared by data and media trans-
mitting terminals, within a model relevant to the uplink of a
VSG-CDMA cell, a technique part of 3G standards. Each media
terminal has a fixed data rate and an inflexible SIR requirement.
But the data terminals are delay-tolerant, and their power and
data rates can be assigned at will within specified limits, for
the benefit of network efficiency. We seek power and data rate
allocations that maximize the weighted sum of the throughput
of each data terminal, while satisfying the bit rate and SIR
requirements of the media terminals. In this paper, 3 terminals
are considered: one media transmitting terminal, and two data
terminals, one more “important” than the other. Our analysis is
based on classical optimization theory, and should accommodate
many physical layer configurations.

I. I NTRODUCTION

Modern wireless networks will accommodate simultaneous
transceivers operating at very different bit rates. Some of the
transceivers may be transferring data, while others transfer
media content, such as voice, images, or video. Previous work
of ours ([1], [2], [3]) study throughput maximization in a
model relevant to a single-cell VSG-CDMA system in which
eachdata terminal can operate within a range of bit rates,
assumed continuous for tractability. This paper discusses how
to extend our previous work to consider three additional items:
(i) transmission power limits, (ii) non-negligible out-of-cell
interference, and (iii) the presence of media-transmitting ter-
minals with fixed bit rates and inflexible signal-to-interference
ratio (SIR) requirements.

Power limitations are important for obvious reasons. How-
ever, when out-of-cell interference is negligible (system is
“interference limited”), the noise term in the SIR expression
may be neglected, and the power allocation reduces to finding
a vector of carrier-to-interference ratios expressing received
power ratios. For example, with only two terminals, power
allocation reduces to finding the optimal ratio between the re-
ceived powers of the two terminals. Theoretically, the optimal
power levels are arbitrary, as long as they maintain the optimal
ratio. However, when the noise term includes strong out-of-
cell interference, the power limitations of the terminals need
to be explicitly considered. Additionally, there may be media-
transmitting terminals operating at fixed bit rates and SIR. To

the data terminals, these media terminals appear as additional
sources of “noise”.

In the present work, a power-limited media terminal inter-
acts with two data terminals. The cell seeks to maximize a
weightedsum of the throughputs of the data terminals. We
refer to the terminal whose throughput is weighted more heav-
ily as “important”. The weights admit various interpretations,
including levels of importance or priority among thedata
terminals, “utility” per bit each terminal derives, or monetary
prices paid by the terminals. The data terminals are delay-
tolerant, and operate at power and data rates that can be
assigned at will within specified limits. However, the media
terminal operates at a fixed data rate, and has an inflexible
SIR requirement.

The throughput maximization problem with media terminals
present does not appear to have been treated in the literature,
especially within an analytical model. However, in addition
to references [1], [2], [3], other references treat throughput
maximization among data terminals. Reference [4] represents
a related strand of work involving these authors, in which
the data rates are fixed and identical, and the throughput-
maximizing number of terminals is found, along with the
power allocation. Reference [5] has much in common with our
previous works, except that this reference does not consider
weights and applies a simplifying linearization. Reference [6]
also seeks data rates and power allocation, and consider a
“sigmoidal-like” frame-success function, but focuses on the
downlink, does not consider weights, and provides a sub-
optimal algorithmic solution based on pricing. Reference [7]
maximizes a fairly general “capacity function”, does not
consider weights, and assume that the terminal’s data rates
are different but fixed. Other related works seek decentralized
solutions.

Another significant difference between our models and the
literature is our characterization of the frame-success function
(FSF), which gives the probability that a data packet is
received successfully in terms of the terminal’s received signal-
to-interference ratio (SIR). This function depends on many
physical attributes of the system, such as the modulation
technique, the forward error detection scheme, the nature of



the channel, and properties of the receiver. We donot impose
any particular algebraic functional form (“equation”) on the
FSF. Rather, we assume thatall that is known about this
function is that its graph is a smooth S-shaped curve, as
displayed in fig. 1, and base our analysis on properties derived
from this shape. Hence, our analysis should apply to many
physical layer configurations of practical interest. Reference
[8] discusses further this modeling approach.

Below, a relatively simple optimization model relevant to
uplink data and media transmission in one VSG-CDMA
cell is built. The first-order necessary optimizing conditions
(FONOC) are presented, and two possible solutions to FONOC
are discussed: one in which only the important data terminal
operates at the highest available data rate, and another solution
in which both data terminals operate at this rate.
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Fig. 1. A particularf(x) , xf ′(x), and scaled versions off ′(x), and
x2f ′(x). γ0 satisfiesxf ′(x) = f(x)

II. GENERAL FORMULATION

A. System Model

We seek to solve:

Maximize T1(G1, α1) + βT2(G2, α2) (1)

subject to
α1

1 + α1
+

α2

1 + α2
≤ 1− ε3 (2)

Gi ≥ G0 , i ∈ {1, 2} (3)

G3 = Ḡ3 (4)

α3 =
γ̄3

Ḡ3
(5)

In this simple model,

1) The throughput of data terminal i is defined as
RCTi(Gi, αi), with

Ti(Gi, αi) :=
f(Giαi)

Gi
(6)

2) Gi = RC/Ri, is the spreading gain of terminali; i.e.,
the ratio of the channel’s chip rate ,RC to the terminal’s
data transmission rateRi (bits per second).G0 ≥ 1 is
the lowest available spreading gain (determined by the
highest available data rate).

3) αi is the carrier-to-interference ratio (CIR) of the signal
from terminali received at the base station.αi is defined
as,

αi :=
Pihi∑N

j=1
j 6=i

Pjhj + σ2
=

Qi∑N
j=1
j 6=i

Qj + σ2
(7)

with Pi the transmission power of terminali, hi its
path gain,hiPi := Qi its received power, andσ2 a
representative of the average noise power and, possibly,
out-of-cell interference.

4) Each terminal has an upper bound on its transmission
power, P̄i. For convenience, we sethiP̄i = Q̄i.

5) Constraint (2) ensures that a set of achievable received
powers exists that produce the givenαi’s. [9], [10], [11].
This is discussed below.

6) The productGiαi, denoted asγi, is terminali’s signal to
interference (SIR) ratio. For media terminals, a specific
SIR value must be provided. For data terminal, the SIR
is to be determined optimally, along with the data rates,
to maximize the network’s weighted throughput. Notice
that

αi/(1 + αi) ≡ 1/(1 + α−1
i ) ≡ 1/(1 + Gi/γi) (8)

7) Each terminal has an upper bound on its transmission
power, P̄i. For convenience, we sethiP̄i = Q̄i. For
media terminals, we definêhi = (1 + Ḡi/γ̄i)hi as the
terminal’s “effective” path gain, because the analysis
shows that the terminal with the lowestĥiP̄i has the
greatest difficulty in reaching the power level leading
to its desired SIR. The greater limitation to network
performance is imposed by the terminal in the worst
situation. Because of the inflexible SIR requirement of
media terminals, it is less favorable for the cell that the
terminal in the worst situation be a media terminal, as
opposed to a data terminal, and we assume so, below.

8) βi ≥ 1 is a weight, which admits various practical
interpretations. With no loss of generality, we set1 =
β1 ≤ β2 = β.

9) There is a frame-success function (FSF),fS , which
gives the probability of the correct reception of a data
packet in terms of the received SIR. We assume that
all that is knownabout this function is that it is an “S-
curve”, as discussed in [8] (see fig. 1), and that it has a
continuous second derivative. For technical reasons, we
work with f(x) := fS(x)− fS(0), (fS(0) is very small
but not zero). To provide numerical examples, we use
the FSF corresponding, under suitable assumptions, to
non-coherent FSK modulation, with no FEC, and packet



size 80, which is,

fs(x) =
[
1− 1

2
exp

(
−x

2

)]80
(9)

In the development below, an asterisk used as a superscript on
a variable denotes a specific value of the variable which sat-
isfies certain optimality condition. We refer to a data terminal
operating at maximal data rate as “favored” or “favorite”.

B. Power Limitations

For a given set ofαi, the resulting received power levels
are such that

Qi =
σ2

1− s0

αi

1 + αi
(10)

with

s0 :=
N∑

i=1

αi

1 + αi
≡

N∑
i=1

1
1 + Gi/γi

(11)

[9], [10], [11].
It is sometimes convenient to observe thats0 can be written

as

s0 :=
N∑

i=1

αi

1 + αi
≡ N −

N∑
i=1

1
1 + αi

(12)

Whenevers0 < 1, eq. (10) gives positive values. But some
of these values may be too high, given the power limitations of
the terminals. To prevent this from happening, we proceed as
in [10], and obtain the feasibility condition given by inequality
(2) as follows. We want, for eachi :

Qi =
σ2

1− s0

αi

αi + 1
≤ hiP̄i

Simple algebra indicates that, in order for this inequality to
hold, s0 must satisfy:

s0 ≤ 1− σ2

hiP̄i

αi

αi + 1
≡ 1− σ2(

1 + α−1
i

)
hiP̄i

for all i, OR

s0 ≤ 1− σ2

min
i
{(1 + 1/αi)hiP̄i}

Because of the inflexible SIR requirement of media termi-
nals, it is less favorable for the cell that the terminal in the
worst situation be a media terminal, as opposed to a data
terminal. Therefore, let us assume that that terminal3 is in
the “worst situation” in the sense that

(
1 + Ḡ3/γ̄3

)
h3P̄3 <(

1 + α−1
i

)
hiP̄i for i ∈ {1, 2}. For example, the power

limits of the data terminals may be such thathiP̄i ≥(
1 + Ḡ3/γ̄3

)
h3P̄3 for i ∈ {1, 2}. This guarantees that re-

gardless of the optimal choice ofαi, a data terminal will not
minimize (1 + 1/αi)hiP̄i. Thus, we obtain:

s0 ≤ 1− σ2(
1 + Ḡ3/γ̄3

)
h3P̄3

(13)

We obtain constraint (2) from (13), by movingα3/(1+α3)
to the right-hand side, and defining:

ε3 =
(

1 +
σ2

h3P̄3

)
1

1 + Ḡ3/γ̄3
(14)

Notice that each of the symbols on the right-hand side of
equation (14) represents a known quantity. Thus,ε3 is known.

III. O BTAINING THE OPTIMAL VALUES

A. Optimization Model

We seek to solve:

max
Gi,αi

f(G1α1)
G1

+ β
f(G2α2)

G2
(15)

subject to
α1

1 + α1
+

α2

1 + α2
≤ 1− ε3 (16)

Gi ≥ G0 i ∈ {1, 2} (17)

G3 = Ḡ3 (18)

α3 = γ̄3/Ḡ3 (19)

Some reflection indicates that constraint (16) should be sat-
isfied with equality. Otherwise, we could increase the weighted
throughput by raising eitherαi, while still satisfying constraint
(16). However, it is not clear a priori whether either or both
of constraints (17) should be satisfied with equality.

B. First-Order Necessary Optimizing Conditions (FONOC)

The Lagrangian corresponding to this problem can be
written as

T1(G1α1) + βT (G2α2) +

λ

(
2∑

i=1

αi

1 + αi
− 1 + ε3

)
+

2∑
i=1

µi(G0 −Gi) (20)

The FONOC can be expressed in vector form, withγi =
Giαi, as:

∂T1(G1, α1)/∂G1 − µ1

β∂T2(G2, α2)/∂G2 − µ2

f ′(γ1) + λ(1 + α1)−2

βf ′(γ2) + λ(1 + α2)−2

 =


0
0
0
0

 (21)

with

α1

1 + α1
+

α2

1 + α2
= 1− ε3 (22)

µ1(G0 −G1) = 0 (23)

µ2(G0 −G2) = 0 (24)

Notice that

∂Ti(Gi, αi)
∂Gi

=
γif

′(γi)− f(γi)
G2

i

(25)

Also, from eq. (12), condition (22) can be equivalently stated
as

1
1 + α1

+
1

1 + α2
= 1 + ε3 (26)



C. Solving FONOC

1) A single-favorite boundary solution:From our previous
experience with similar problems [1], [2], [3], we will first
explore a solution to FONOC in which the important data
terminal operates at maximal data rate (G2 = G0), with
the data rate of the ordinary terminal somewhere within its
allowable range (i.e.,µ1 = 0, which allows anyG1 ≥ G0 per
“complementary slackness” condition (23) ). (With only 2 data
terminals, the phrase “single favorite” is redundant, since there
can be at most one favorite. But the phrase is used because it
has a similar usage in the many-terminal scenario)

Working with the top row of the matrix equation (21), we
obtainγ1f

′(γ1) = f(γ1), an equation of the general form:

xf ′ (x) = f (x) (27)

With f an S-curve, there is a unique positive valueγ0 which
satisfies equation (27), which can be seen in figure (1) at the
tangency point between the graph off and a straight line from
the origin. Therefore,

G∗
1α

∗
1 = γ0 (28)

Combining eq. (28) with the bottom half of the matrix equation
(21), we obtain (

1 + α2

1 + α1

)2
f ′(γ2)
f ′(γ0)

=
1
β

(29)

Equation (26) can be written as

1 + α2

1 + α1
= (1 + ε3)α2 + ε3 (30)

Combining eqs. (29) and (30), we obtain, withx in place
of γ2,: (

(1 + ε3)
x

G0
+ ε3

)2
f ′(x)
f ′(γ0)

=
1
β

(31)

In eq. (31), all quantities, except forx, are presumed known.
Thus, this is a single-variable equation. Notice thatG0 ≥ 2;
and values ofε3greater than or equal to 1 are useless, because
if ε3 ≥ 1 condition (21) cannot possibly be satisfied; thus,
(1 + ε3)(x/G0) + ε3 ≤ x + 1. This fact is useful in arguing
that ((1 + ε3)(x/G0) + ε3)2f ′(x)/f ′(γ0) has the same “bell-
shaped” graph of the functionx2f ′(x) (fig. 1). This implies
that, if G0 is “too large”, the “top” of this bell may fall below
1/β, unlessβ is also “very large”. Thus, eq. (31) may have
no solution. On the other hand, whenG0 is sufficiently small
and/orβ and/or ε3 is sufficiently large, two values ofx, on
either side of the peak, will satisfy eq. (31). We choose the
larger value,δ0, as the FONOC-solving SIR for the important
terminal. Now,α2 = δ0/G0; with this value, we obtainα1

directly from eq. (26), and by plugging thisα1 value into eq.
(28), we obtainG1. Thus, a complete “single-favorite” solution
to FONOC is found. However, if the resultingα∗

1 is negative,
or if G∗

1 < G0, this solution is useless, and we must consider
a “dual-favorite” solution, with both data terminals operating
at the highest available data rate.

2) Dual-favorite Boundary Solution:In the preceding sec-
tion, we considered the SFBS, in which only the important
terminal operates at the lowest available spreading gain (high-
est data rate). We observed that the SFBS may fail depending
on the values of the parametersG0, β. In this section we seek a
“greedy” solution to FONOC, in which both terminals operate
at the highest available data rate.

Working with the last two rows of equation (21) we estab-
lish, with x = γ2 andy = γ1, that:

f ′(y)
(

1 +
y

G0

)2

= βf ′(x)
(

1 +
x

G0

)2

(32)

Eq. (26) can be re-written as

1
1 + x/G0

+
1

1 + y/G0
= 1 + ε3 (33)

Eqs. (32 and 33) form a system of two non-linear equations
in two unknowns. This system can be solved. Its solution is
characterized through fig. 2.
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Fig. 2. Withx andy respectively the SIR of the important and ordinary ter-
minal, FONOC requires thatβh(x) = h(y), with h(t) = f ′(t) (1 + t/G0)2.
Any of the pairs(x1, y1), (x2, y2), (x1, y2), or (x2, y1) (top) satisfies this
equation, but may not be feasible. We plot all such points, which reveals an
“X-shaped” graph (NE, NW, SW and SE are directional labels). On the same
axes, we plot the hyperbolic curves (dotted) which represent the constraint
equation (33). The intersection of the hyperbola with the NE leg of the X
yields the maximizer. The termε3 (representing the resources used up by the
media terminal) has the effect of “pulling down” the hyperbola, whereasG0

tends to raise it. WhenG0 is sufficiently low orε3 is sufficiently high, the
hyperbola mayonly intersect the SW leg of the X-curve, which leads to a
minimum.



IV. D ISCUSSION

The optimal power levels and data rates for data terminals
that share one base station with media terminals, which have
fixed bit rates and inflexible SIR requirements, have been
investigated. This scenario is relevant to 3G CDMA. The
objective is to maximize theweightedsum of thedata ter-
minal’s throughput, while honoring QoS commitments made
to the media terminal. Two weights, which admit various
interpretations, including levels of importance, “utilities”, or
monetary prices, are considered. The properties of the physical
layer are embodied in the frame success function (FSF), which
gives, in terms of received signal-to-interference ratio (SIR),
the probability that a data packet is correctly received. No
specific functional form (“equation”) is imposed on the FSF. It
is assumed thatall that is knownabout the FSF is that its graph
is “S-shaped”, and the analysis follows from properties derived
from this shape (some additional technical assumptions are
needed by certain results). Therefore, many physical layer
configurations of practical interest are accommodated. Each
physical layer has a preferred SIR,γ0, easily identified in the
graph of the FSF.

Our primary aim in the present paper was to start extending
the analysis in [1], [2], [3], in which neither the presence
of media-transmitting terminals nor out-of-cell interference
are considered, to the richer and more interesting scenario
discussed herein. Our main conclusion is that much of our
previous analysis can be applied to the present scenario.
The effects of the media terminal, the out-of-cell interference
(noise), and the power limitations of the terminals, combine
into a single term,ε3, that reduces the right-hand-side of
the constraint on the carrier-to-interference ratios. This term
represents the “resources” consumed by the media terminal.

This analysis focuses on two allocations satisfying the
first-order necessary optimality conditions (FONOC): (i) an
“unbalanced” assignment in which the important terminal
operates at the highest available data rate, with the other
terminal achieving the SIR,γ0; and (ii) a “greedy” assignment
in which both terminals operate at the highest available data
rate. In our previous work, we have analyzed the second-
order conditions for these allocations, for the case in which
there are no media terminals, or noise. We proved that the
unbalanced allocation is a maximizer whenever it exists, while
the greedy allocation can lead to either a maximum or a
minimum depending upon the system parameters. We expect
those conclusions to continue to hold in the present scenario.

The important terminal should always operate at maximal
data rate. From our previous work we know that, without
the media terminal, only whenG0 is “large” relative to
β should both data terminals operate at maximal data rate
(G0 is the smallest available spreading gain andβ is the
weight of the important terminal). With the media terminal
consuming resources, theG0 value at which both terminals
should operate at maximal rate for a givenβ increases. All
this makes intuitive sense, because whenG0 is “large”, the
highest available data rate is relatively small, and keeping only

one terminal operating at maximal data rate is not appealing,
unless that terminal has “a lot of weight”. However, when a
media terminal is taking up resources, and/or when the highest
available data rate is very high (G0 is low), an allocation in
which only oneterminal operates at the highest rate is more
appealing. The “greedy” allocation is particularly treacherous,
because it can lead to either a maximum or a minimum,
depending upon how largeG0 is, and the amount of resources
consumed by the the media terminal (ε3).

It is significant that the greedy and the unbalanced alloca-
tions are complementary in this sense: the factors that tend to
turn the greedy allocation into a minimizer (a lowG0 and/or
a high ε3), tend to make feasible the unbalanced allocation,
which is a maximizer.
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