
Generalised water-filling: costly power
optimally allocated to sub-carriers under a

general concave performance function

Virgilio RODRIGUEZ1, Rudolf MATHAR

Theoretische Informationstechnik
RWTH Aachen

Aachen, Germany
email: vr@ieee.org

17 Mar 2009

1Supported by the DFG UMIC project
Virgilio RODRIGUEZ, Rudolf MATHAR Generalised water-filling 1/11



Executive Overview

We generalise the standard “water-filling” scenario: we
allocate a power budget to a number of subchannels with a
price on power, and sub-channel performance given by a
general concave function of the power allocated to the
sub-carrier.
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Philosophy: market as a paradigm for algorithms

A complex technological system can be “efficiently”
managed as an “economy”
The system can be viewed as integrated by many “agents”
Agents may correspond to actual human beings, or may be
machines, or processes
The system administrator sets up some relatively simple
rules for resource use and behaviour (prices, auctions,
rewards, punishments, etc)
Each agent behaves and utilises resources as an
economic entity seeking to maximise its “preferences”
while obeying the rules and budget constraints (energy,
power, bandwidth, etc).
If the rules are “right”, the complex system produces
“efficient” results
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Problem statement

One terminal, M sub-channels, total power constraint
sub-channel state represented by hm : power gain over
noise
(for convenience h1 ≥ ·· · ≥ hM > 0)
total power constraint: P
1 unit of power costs c0 ($/Watt)
1 bit is worth to the terminal b0 ($/bit)
General f0 : ℜ+→ℜ+ yields performance (bits) from
sub-channel signal-to-noise ratio (SNR) xm = hmpm
Terminal maximises benefit minus cost (“surplus”):

max
x1,··· ,xM

b0

M

∑
m=1

f0(xm)−c0

M

∑
m=1

xm

hm

s.t.
M

∑
m=1

xm

hm
≤ P (1)

xm ≥ 0
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General concave performance function of SNR

SNR

general performance function and its derivative (−.)

f0 : ℜ+→ℜ+

strictly increasing
concave (f ′0 is strictly decreasing)
f0(0) = 0
f ′0(0)< ∞

limt→∞ f ′0(t) = 0
EXAMPLE: fS(t) := ln(1+ t)
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1st step: Normalisation

SNR

general performance function and its derivative (−.) objective function can be re-written as

b0f ′0(0)

(
M

∑
m=1

f0(xm)

f ′0(0)
− c0

b0f ′0(0)

M

∑
m=1

xm

hm

)

Let f (t) := f0(t)/f ′0(0) ( f ′(0) = 1)
with c := c0/(b0f ′0(0)) problem can be
re-stated as:

max
x1,··· ,xM

M

∑
m=1

f (xm)−c
M

∑
m=1

xm

hm

s.t.
M

∑
m=1

xm

hm
≤ P (2)

xm ≥ 0
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First-order necessary optimising conditions (FONOC)

Fact
If (x∗1 , · · · ,x∗M) is a (local) optimiser corresponding to Problem
(1), then there are non-negative real numbers λ , µ1, · · · .µM
such that

hmf ′ (x∗m) = c+λ −µm ∀m (3)

λ

(
M

∑
m=1

x∗m
hm
−P

)
= 0 (4)

µm
x∗m
hm

= 0 ∀m (5)

First result: the normalised power cost c defines a threshold for
channel usability; if hm ≤ c then the sub-channel is useless; i.e.,
if (x∗1 , · · · ,x∗M) is a (local) optimiser then hm < c =⇒ x∗m = 0
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Two solutions to FONOC

Two cases of interest:
Power is “plentiful” (power-constraint multiplier λ = 0)
Power is “scarce” (λ > 0)
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Plentiful power solution (λ = 0)

each usable sub-channel is allocated its individual
maximiser (“greedy” solution); that is, the choice that
maximises benefit minus cost on a channel-by-channel
basis.
The “greedy” optimiser is defined by hmf ′(hmpm) = c
has a “water-filling” interpretation in logarithmic (“dB”)
scale: log(hm)+ log(f ′(hmpm)) = log(c).
for f (t) = ln(1+ t) it leads to water-filling in the natural
scale over the usable sub-channels:

pm +1/hm = 1/c
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Scarce power solution

“greedy solution” may exceed the total power constraint
in this case , λ becomes non-zero
system behaves as if the power price was c+λ (“effective”
price):

hmf ′(hmpm) = c+λ

c+λ ∗ makes total power consumption (“demand”) equal to
the total available “supply” (i.e., the “market clearance”
price).
To find λ ∗ set total allocated power equal to constraint
(some iterations may be needed).
An initially usable sub-channel (hm > c) may become
unusable: hm ≤ c+λ ∗

For logarithmic f ,

c+λ
∗ =

m0−1

P +∑
m0−1
m=1

1
hm
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Summary
The sub-channel power allocation problem and its
“water-filling” solution are well-known, when

the performance (“capacity”) function is logarithmic and
power is constrained but costless.

We have generalised this problem by considering
a general concave performance function and
a per-Watt price.

The solution retains the general water-filling structure, but
the costly power does change matters:

the normalised power price translates to a channel gain: if a
noise-normalised sub-channel gain hm < c the sub-channel
is not usable: marginal benefit of buying a unit of power is
less than its cost (all sub-channels be discarded)
Basic equation: hmf ′(hmpm) = c+λ

Our analysis can be applied:
directly as a price-driven power-allocation, for time-division
OFDM
for OFDMA, if combined with a good sub-channel allocation
scheme (see our other paper!)


