

An Optimal Architecture for a Multi-Standard Reconfigurable Radio:

A Network Theory Re-formulation

by

V. Rodriguez, C. Moy, J. Palicot

SCEE Laboratory

IETR, Supélec, France

vr <at> ieee.org, {christophe.moy, jacques.palicot}@supelec.fr

IEEE PIMRC

Helsinki, Finland — 11-14 September, 2006

The state of the s

Overview of our approach:

choosing between extremes

- A multi-standard radio as a graph
- A "realistic" mini-design (larger design in paper)
- The network design problem
- Available promising algorithms
- Discussion/Outlook

Choice between Extremes

- To design a multistandard reconfigurable radio one must:
 - choose between 2 extremes
- One extreme: go "Velcro":
 one self-contained component per standard
- Other extreme: go "primitive":
 - Use only adders, multipliers, etc.
 - provide "higher" functionality by multiple calls
- Trade-offs:
 - Velcro provides best performance, but at highest manufacturing cost (and size/weight)
 - Other extreme likely minimises cost (and size/weight) but at unacceptable performance

WHAT TO DO??

OURAPPROACHUM

• Find:

BEST TRADE-OFF between PERFORMANCE and COST

- To do it :
 - -build a mathematical model
 - Use suitable algorithm to solve model. In present paper, we use the:

NETWORK DESIGN PROBLEM

Overview

- Model radio as graph of progressively simpler functional modules
- Module can be implemented in 2 ways:
 - Install a dedicated component
 - invoke (repetitively) lower level modules
- Two critical parameters per component:
 - money and time (computational delay)
- Two approaches for considering money and time:
 - Minimise weighted sum of money and time
 - Minimise monetary cost subject to "deadlines" for top modules
- The optimal design costs less (among those which respect the deadlines if applicable)
- In present work, to find the optimum we recast design as:

NETWORK DESIGN PROBLEM

Possible Dependencies

Left:

Module A needs:

EITHER B OR C

Right:

Module A needs

BOTH B & C

A Tri-standard Radio

A Realistic "mini-design"

- Want a design to support 2 main functional modules: OFDM and Equalisation
- OFDM needs fast Fourier transform (FFT)
- Equalisation (to compensate for multipath) can be implemented via
 - FIR filtering,OR
 - FFT (great for channels with long impulse responses)

Install or Invoke?

- Key question: should we
 - install a self-contained/dedicated component to perform a given functionality, OR
 - invoke lower level modules/components?
- A component is specified by: monetary cost and performance (execution time)
- When a lower-level component is needed several times it is called multiple times
- Choose least expensive design (that satisfies the "deadline" of <u>each</u> top module if applicable)
- Algorithm: based on network design here (exhaustive search, simulated annealing, used elsewhere)

Graph of Design Choices

NSTITUT D'ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

Network Design Problem

 Want "road network" to connect "o" to each terminal t_i "efficiently"

- Many possibilities. E.g.:
 - "Fastest": 3 "direct" links
 - $-O \rightarrow A$, A to each t_i
- Good algorithms are already available in the literature

Network Design and OUR Problem

- "Terminals" are top modules ("standards")
- "Reaching t_i from o" means we can support top module t_i .
- "Building a road" from o to A means to INSTALL a self-contained component for A
- Generally, a link costs money to build and takes time to travel
- A "pre-built link" is a known algorithms that cost no money (but takes time)

Graph Network Design

Région

BRETAGNE

Supélec IEEE PIMRC — Helsinki, 11-14 Sep 2006

Network Design in Greater Detail

INSTITUT D'ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

also free to each destination.

D'ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

Available Algorithms

- Bi-criteria ("cost-distance") network-design algorithms fit well with our formulation (distance -> execution time)
- Minimise weighted sum of money and time:
 - Meyerson, et al., "Cost-distance: two metric network design" in Proc. of <u>Foundations of Computer Science</u>, 2000
 - Chekuri, et al., "A deterministic algorithm for the costdistance problem" in Proc. of <u>ACM-SIAM Symposium on</u> <u>Discrete Algorithms</u>, 2001
- Minimise cost subject to time constraint:
 - Marathe, et al., "Bicriteria network design problems"
 Journal of Algorithms, 1998

Discussion

- To find an architecture for a multi-standard reconfigurable radio that minimises cost while considering performance objectives we model the radio as a graph of progressively simpler modules
- KEY: install (a component) or invoke (simpler modules)?
- Easier to visualise "components" as "chips", but approach is quite general: If DSP-based design, view "component" as "object" (object-oriented progr.). But introduce in the analysis the price-performance trade-off of the processor itself.
- To search efficiently the solution space, presently we convert graph to "NETWORK DESIGN PROBLEM"
- A simple but realistic "mini-design" illustrates our approach
- Available, promising "bi-criteria" algorithms have been cited
- Even an imperfect graph-network mapping may yield a design
 close to "true" optimum

Ongoing/Future Work

- Rebuilding the hypergraph of design choices. Researchers seek:
 - new operators (modules) common to several communication "blocks"
 - to replace time-domain with new frequency-domain algorithms (which would add arcs pointing to FFT)
 - to include complete communication standards in the graph, and track their evolution
- Consideration of:
 - Price/performance trade-off of DSP itself
 - multiple instances of same component (butterfly, FFT, etc) to reflect market choices
 - time needed to re-configure the radio while switching standards
 - "travel time" of signals from a component to another
 - possible contention among high level modules for the service of the same lower-level module (which may be critical if the radio needs to support simultaneous operation over several standards)

THANK YOU!!

Questions?

www.rennes.supelec.fr/ren/rd/scee/

Thanks to "Région Bretagne", France

